DOI QR코드

DOI QR Code

Determination of Si/Al Ratio of Faujasite-type Zeolite by Single-crystal X-ray Diffraction Technique. Single-crystal Structures of Fully Tl+- and Partially K+-exchanged Zeolites Y (FAU), |Tl71|[Si121Al71O384]-FAU and |K53Na18|[Si121Al71O384]-FAU

  • Seo, Sung-Man (Department of Applied Chemistry, Andong National University) ;
  • Lee, Oh-Seuk (Department of Applied Chemistry, Andong National University) ;
  • Kim, Hu-Sik (Department of Applied Chemistry, Andong National University) ;
  • Bae, Dong-Han (Department of Research and Development) ;
  • Chun, Ik-Jo (Department of Horticulture and Breeding, Andong National University) ;
  • Lim, Woo-Taik (Department of Applied Chemistry, Andong National University)
  • Published : 2007.10.20

Abstract

Large colorless single crystals of faujasite-type zeolite with diameters up to 200 μm have been synthesized from gels with the composition of 3.58SiO2:2.08NaAlO2:7.59NaOH:455H2O:5.06TEA:1.23TCl. Two of these, colorless octahedron about 200 μm in cross-section have been treated with aqueous 0.1 M TlC2H3O2 and KNO3 in order to prepare Tl+- and K+-exchanged faujasite-type zeolites, respectively, and then determined the Si/Al ratio of the zeolite framework. The crystal structures of |Tl71|[Si121Al71O384]-FAU and |K53Na18|[Si121Al71O384]-FAU per unit cell, a = 24.9463(2) and 24.9211(16) A, respectively, dehydrated at 673 K and 1 × 10-6 Torr, have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd m at 294 K. The two single-crystal structures were refined using all intensities to the final error indices (using only the 905 and 429 reflections for which Fo > 4σ(Fo)) R1/R2 = 0.059/0.153 and 0.066/0.290, respectively. In the structure of fully Tl+-exchanged faujasite-type zeolite, 71 Tl+ ions per unit cell are located at four different crystallographic sites. Twenty-nine Tl+ ions fill site I' in the sodalite cavities on 3-fold axes opposite double 6-rings (Tl-O = 2.631(12) A and O-Tl-O = 93.8(4)o). Another 31 Tl+ ions fill site II opposite single 6-rings in the supercage (Tl-O = 2.782(12) A and O-Tl-O = 87.9(4)o). About 3 Tl+ ions are found at site III in the supercage (Tl-O = 2.91(6) and 3.44(3) A), and the remaining 8 occupy another site III (Tl-O = 2.49(5) and 3.06(3) A). In the structure of partially K+-exchanged faujasite-type zeolite, 53 K+ ions per unit cell are found at five different crystallographic sites and 18 Na+ ions per unit cell are found at two different crystallographic sites. The 4 K+ ions are located at site I, the center of the hexagonal prism (K-O = 2.796(8) A and O-K-O = 89.0(3)o). The 10 K+ ions are found at site I' in the sodalite cavity (K-O = 2.570(19) A and O-KO = 99.4(9)o). Twenty-two K+ ions are found at site II in the supercage (K-O = 2.711(9) A and O-K-O = 94.7(3)o). The 5 K+ ions are found at site III deep in the supercage (K-O = 2.90(5) and 3.36(3) A), and 12 K+ ions are found at another site III' (K-O = 2.55(3) and 2.968(18) A). Twelve Na+ ions also lie at site I' (Na-O = 2.292(10) and O-Na-O = 117.5(5)o). The 6 Na+ ions are found at site II in the supercage (Na-O = 2.390(17) A and O-Na-O = 113.1(11)o). The Si/Al ratio of synthetic faujasite-type zeolite is 1.70 determined by the occupations of cations, 71, in two single-crystal structures.

Keywords

References

  1. Ciric, J. Science 1967, 155, 689
  2. Charnell, J. F. J. Cryst. Growth 1971, 8, 29-294 https://doi.org/10.1016/0022-0248(71)90018-2
  3. Warzywoda, J.; Bac, N.; Sacco Jr., A. J. Crystal Growth 1999, 204, 539-541 https://doi.org/10.1016/S0022-0248(99)00235-3
  4. Ferchiche, S.; Valcheva-Traykova, M.; Vaughan, D. E. W.; Warzywoda, J.; Sacco Jr., A. J. Crystal Growth 2001, 222, 801- 805 https://doi.org/10.1016/S0022-0248(00)00979-9
  5. Ferchiche, S.; Warzywoda, J.; Sacco Jr., A. Int. J. Inorg. Mater. 2001, 3, 773-780 https://doi.org/10.1016/S1466-6049(01)00046-0
  6. Sacco Jr., A.; Bac, N.; Warzywoda, J.; Guray, I.; Thompson, R. W.; McCauley, L. A. Space Technology and Application International Forum Albuquerque, NM, January 7-11AIP Conference Proceedings, vol. 361, 1996
  7. Sacco Jr., A.; Bac, N.; Warzywoda, J.; Guray, I.; Marceau, M.; Sacco, L.; Whalen, M. Zeolite Crystal Growth (ZCG) Flight on USML-2, Final Report, NASA Contract No.: NAS-40260
  8. Sato, K.; Nishimura, Y.; Honna, K.; Matsubayashi, N.; Shimada, H. J. Catal. 2001, 200, 288 https://doi.org/10.1006/jcat.2001.3184
  9. Lim, W. T.; Kwon J. H.; Choi, S. Y.; Kim, Y. H.; Heo, N. H. Anal. Sci. & Tech. 2005, 18(4), 278-286
  10. Lim, W. T.; Choi, S. Y.; Choi, J. H.; Kim, Y. H.; Heo, N. H.; Seff, K. Microporous Mesoporous Mater. 2006, 92, 234-242 https://doi.org/10.1016/j.micromeso.2005.11.052
  11. Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307 https://doi.org/10.1016/S0076-6879(97)76066-X
  12. Bruker-AXS (ver. 6.12), XPREP, Program for the Automatic Space Group Determination; Bruker AXS Inc.: Madison, Wisconsin, USA, 2001
  13. Sheldrick, G. M. SHELXL97, Program for the Refinement of Crystal Structures; University of Gottingen: Germany, 1997
  14. Doyle, P. A.; Turner, P. S. Acta Crystallogr., Sect. A 1968, 24, 390 https://doi.org/10.1107/S0567739468000756
  15. International Tables for X-ray Crystallography; Ibers, J. A., Hamilton, W. C., Eds.; Kynoch Press: Birmingham, England, 1974; Vol. IV, pp 71-98
  16. Cromer, D. T. Acta Crystallogr. 1965, 18, 17 https://doi.org/10.1107/S0365110X6500004X
  17. International Tables for X-ray Crystallography; Kynoch Press: Birmingham: England, 1974; Vol. IV, pp 148-150
  18. Loewenstein, W. Am. Mineral. 1954, 39, 92-96
  19. Smith, J. V. Molecular Sieve Zeolites-I in Advances in Chemistry Series; Flanigen, E. M.; Sand, L. B., Eds.; American Chemical Society: Washington, D. C., 1971; vol. 101, pp 171-200
  20. Yeom, Y. H.; Kim, Y.; Seff, K. J. Phys. Chem. B 1997, 101, 5314 https://doi.org/10.1021/jp970727i
  21. Song, M. K.; Kim. Y.; Seff, K. J. Phys. Chem. B 2003, 107, 3117 https://doi.org/10.1021/jp0215623
  22. Handbook of Chemistry and Physics, 70th ed.; The Chemical Rubber Co.: Cleveland, OH, 1989/1990; p F-187
  23. Jeong, G. H.; Lee, Y. M.; Kim, Y.; Vaughan, D. E. W.; Seff, K. Microporous Mesoporous Mater. 2006, 94, 313-319 https://doi.org/10.1016/j.micromeso.2006.01.023

Cited by

  1. Clusters Fill Sodalite Cavities vol.115, pp.41, 2011, https://doi.org/10.1021/jp206159w
  2. Single-Crystal Structure of Fully Dehydrated, Largely Rb+-Exchanged Zeolite Y (FAU, Si/Al = 1.56), |Rb59Na16|[Si117Al75O384]-FAU vol.43, pp.8, 2013, https://doi.org/10.1007/s10870-013-0435-9
  3. –LTA vol.119, pp.32, 2015, https://doi.org/10.1021/acs.jpcc.5b04859
  4. vol.121, pp.1, 2017, https://doi.org/10.1021/acs.jpcc.6b10811
  5. Cs: Structures and Luminescence of Hf,Cl,Tl-A and Hf,Cl,Cs,Na-A vol.121, pp.36, 2017, https://doi.org/10.1021/acs.jpcc.7b05641
  6. Crystallographic studies on the site selectivity of Ca2+, K+, and Rb+ ions within zeolite Y (Si/Al = 1.56) vol.24, pp.4, 2017, https://doi.org/10.1007/s10934-016-0335-4
  7. Assessing Inter and Intra-particle Heterogeneity in Alumina-poor H-ZSM-5 Zeolites vol.9, pp.18, 2017, https://doi.org/10.1002/cctc.201700696
  8. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  9. Tetrahydroxytetraindium(III) Nanoclusters, In4(OH)48+, in Air-Oxidized Fully In-Exchanged Zeolite Y (FAU, Si/Al = 1.69). Preparation and Crystal Structures of In vol.114, pp.37, 2007, https://doi.org/10.1021/jp1057836
  10. The Pentagallium Cation in Zeolite Y. Preparation and Crystal Structure of Ga42Tl9.3−Si121Al71O384 Containing Ga57+, vol.115, pp.6, 2011, https://doi.org/10.1021/jp109298e