DOI QR코드

DOI QR Code

Thermodynamic and Structural Studies on the Human Serum Albumin in the Presence of a Polyoxometalate

  • Ajloo, D. (Faculty of Chemistry, Damghan University of Basic Science) ;
  • Behnam, H. (Faculty of Chemistry, Damghan University of Basic Science) ;
  • Saboury, A.A. (Institute of Biochemistry and Biophysics, The University of Tehran) ;
  • Mohamadi-Zonoz, F. (Faculty of Chemistry, Damghan University of Basic Science) ;
  • Ranjbar, B. (Department of Biophysics, Faculty of Basic Science, Tarbiat Modarres University) ;
  • Moosavi-Movahedi, A.A. (Institute of Biochemistry and Biophysics, The University of Tehran) ;
  • Hasani, Z. (Department of Biophysics, Faculty of Basic Science, Tarbiat Modarres University) ;
  • Alizadeh, K. (Department of Chemistry, Faculty of Basic Science, Tarbiat Modarres University) ;
  • Gharanfoli, M. (Institute of Biochemistry and Biophysics, The University of Tehran) ;
  • Amani, M. (Institute of Biochemistry and Biophysics, The University of Tehran)
  • Published : 2007.05.20

Abstract

The interaction of a polyoxometal (POM), K6SiW11Co(H2O)O39.10H2O (K6) as a Keggin, with human serum albumin (HSA) was studied by different methods and techniques. Binding studies show two sets of binding sites for interaction of POM to HSA. Binding analysis and isothermal calorimetery revealed that, the first set of binding site has lower number of bound ligand per mole of protein (ν), lower Hill constant (n), higher binding constant (K), more negative entropy (ΔS) and more electrostatic interaction in comparison to the second set of binding site. In addition, differential scanning calorimetery (DSC) and spectrophotometery data showed that, there are two energetic domains. The first domain is less stable (lower Tm and Cp) which corresponds to the tail segment of HSA and another with more stability is related to the head segment of HSA. Polyoxometal also decreases the stability of protein as Tm, secondary and tertiary structure as well as quenching of the fluorescence decrease. On other hand, perturbations in tertiary structure are more than secondary structure.

Keywords

References

  1. Shakai, N.; Garlick, R. L.; Bunn, H. F. J. Biol. Chem. 1984, 259, 3812
  2. Carter, D. C.; Ho, J. X. Adv. Protein Chem. 1994, 45, 153 https://doi.org/10.1016/S0065-3233(08)60640-3
  3. Figg, J.; Rossing, T. H.; Fencle, V. J. Lab. Med. 1991, 117, 453
  4. Kragh-Hansen, U. Pharmacol. Rev. 1981, 33, 17
  5. Brown, J. R.; Shockely, P. In Lipid-Protein Interaction; Jost, P. C.; Griffith, O. H., Eds.; Wiley: New York, 1982; vol. 1, pp 26-28
  6. Carter, D. C.; Chang, B.; Ho, J. X.; Keeling, K.; Krishnasami, Z. Eur. J. Biochem. 1994, 226, 1049 https://doi.org/10.1111/j.1432-1033.1994.01049.x
  7. He, X. M.; Carter, D. C. Nature 1992, 358, 209 https://doi.org/10.1038/358209a0
  8. Curry, S.; Mandelkow, H.; Brick, P.; Franks, N. Nat. Struct. Biol. 1998, 5, 827 https://doi.org/10.1038/1869
  9. Peters, T. Advances in Protein Chemistry; Academic Press: New York, 1985; vol. 37, pp 161-245
  10. Narazaki, R.; Mauyama, T.; Otagiri, M. Biochim. Biophys. Acta 1997, 1338, 275 https://doi.org/10.1016/S0167-4838(96)00221-X
  11. Galemo, E. L.; Tabak, M. Spectrochimica Acta Part A 2000, 56, 2255 https://doi.org/10.1016/S1386-1425(00)00313-9
  12. Mohammadi-Nejad, A.; Moosavi-Movahedi, A. A.; Safarian, S.; Naderi-Manesh, M. H.; Ranjbar, B.; Farzami, B.; Mostafavi, H.; Larijani, M. B.; Hakimelahi, G. H. Themichimica Acta 2002, 389, 141
  13. Clercq, E. D. Biomed & Pharmacother 1996, 50, 207 https://doi.org/10.1016/0753-3322(96)87660-8
  14. Rhule, J. T.; Hill, C. L.; Judd, D. A.; Schinazi, R. F. Chem. Rev. 1998, 98, 327 https://doi.org/10.1021/cr960396q
  15. Katsoulis, D. E. Chem. Rev. 1998, 98, 359 https://doi.org/10.1021/cr960398a
  16. Pope, M. T. Heteropoly and Isopoly Oxometalates; Springer- Verlag: Berlin, 1983
  17. Yamamoto, N.; Schols, D.; Clercq, E. D.; Debyser, Z.; Pauwels, R.; Balzarini, J.; Nakashima, H.; Baba, M.; Hosoya, M.; Snoeck, R.; Neyts, J.; Andrei, G.; Murrer, B. A.; Theobald, B.; Bossard, G.; Henson, G.; Abrams, M.; Picker, D. Mol. Pharmacol. 1992, 42, 1109
  18. Bordbar, A. K.; Sohrabi, N.; Tangestaninejad, S. Physics and Chemistry of Liquids 2004, 42, 127 https://doi.org/10.1080/00319100310001623091
  19. Moosavi-Movahedi, A. A. Thermodynamics and Binding Properties of Surfactant-protein interactions in the Encyclopedia of Surface and Colloid Science; Marcel Dekker, Inc.: New York, 2002; pp 5344-5354
  20. Saboury, A. A.; Bordbar, A. K.; Moosavi-Movahedi, A. A. Bull. Chem. Soc. Japan 1996, 69, 3031
  21. Housaindokht, M. R.; Bahrololoom, M.; Tarighatpoor, S.; Moosavi- Movahedi, A. A. Acta Biochimica Polinica 2002, 49, 703
  22. Pedersen, P. V. J. Pharmaceutical. Sci. 1978, 67, 908 https://doi.org/10.1002/jps.2600670709
  23. Ajloo, D.; Moosavi-Movahedi, A. A.; Hakimelahi, G. H.; Saboury, A. A.; Gharibi, H. Colloids and Surfaces B: Biointerfaces 2002, 26, 185
  24. Bathaie, S. Z.; Moosavi-Movahedi, A. A.; Saboury, A. A. Nucleic Acids Research 1999, 25, 1001
  25. Saboury, A. A. J. Chem. Thermodyn. 2003, 35, 1975 https://doi.org/10.1016/j.jct.2003.08.006
  26. Ochoa, D.; Aspuru, E.; Zaton, A. M. J. Biochemical and Biophysical Methods 1993, 27, 87 https://doi.org/10.1016/0165-022X(93)90052-P
  27. Teze, A.; Herve, G. Inorg. Chem. 1977, 39, 2151
  28. Knoth, W. H.; Domail, P. J.; Farlee, R. D. Organometallics 1985, 4, 62 https://doi.org/10.1021/om00120a012
  29. Finke, R. G.; Droge, M. W.; Domail, P. J. Inorg. Chem. 1987, 26, 3886 https://doi.org/10.1021/ic00270a014
  30. Hill, A.V. J. Physiol. 1910, 40, 4
  31. Carter, D. C.; He, X. M.; Munson, S. H.; Twigg, P. D.; Gernert, K. M.; Broom, M. B.; Miller, T. Y. Science 1989, 244, 1117

Cited by

  1. Effect of Cationic and Anionic Porphyrins on the Structure and Activity of Adenosine Deaminase vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3411
  2. The Anticancer Activity and HSA Binding Properties of the Structurally Related Platinum (II) Complexes vol.167, pp.4, 2012, https://doi.org/10.1007/s12010-012-9733-5
  3. Molecular interactions between serum albumin proteins and Keggin type polyoxometalates studied using luminescence spectroscopy vol.15, pp.42, 2013, https://doi.org/10.1039/c3cp52848k
  4. Use of Lanthanide-Containing Polyoxometalates to Sensitise the Emission of Fluorescent Labelled Serum Albumin vol.17, pp.3, 2015, https://doi.org/10.1002/cphc.201500954
  5. Understanding the Regioselective Hydrolysis of Human Serum Albumin by Zr(IV)-Substituted Polyoxotungstates Using Tryptophan Fluorescence Spectroscopy vol.3, pp.2, 2015, https://doi.org/10.3390/inorganics3020230
  6. A Two-Step Binding Process of Eu-Containing Polyoxometalates to Bovine Serum Albumin vol.31, pp.39, 2015, https://doi.org/10.1021/acs.langmuir.5b02868
  7. Quercetin Influence on Thermal Denaturation of Bovine Serum Albumin vol.120, pp.35, 2016, https://doi.org/10.1021/acs.jpcb.6b06214
  8. A survey of the different roles of polyoxometalates in their interaction with amino acids, peptides and proteins vol.46, pp.21, 2017, https://doi.org/10.1039/C7DT00894E
  9. Luminescence enhancement of a europium containing polyoxometalate on interaction with bovine serum albumin vol.7, pp.6, 2008, https://doi.org/10.1039/b802793e
  10. A survey of the year 2007 literature on applications of isothermal titration calorimetry vol.21, pp.5, 2008, https://doi.org/10.1002/jmr.909
  11. The photophysics of europium and terbium polyoxometalates and their interaction with serum albumin: a time-resolved luminescence study vol.12, pp.26, 2010, https://doi.org/10.1039/b925547h
  12. Low-frequency vibrational spectroscopy of proteins with different secondary structures vol.22, pp.9, 2017, https://doi.org/10.1117/1.JBO.22.9.091509
  13. Conformational and Structural Changes of Choline Oxidase from Alcaligenes Species by Changing pH Values vol.29, pp.8, 2007, https://doi.org/10.5012/bkcs.2008.29.8.1510
  14. Molecular simulation study of the binding mechanism of [α-PTi 2 W 10 O 40 ] 7− for its promising broad-spectrum inhibitory activity to FluV-A vol.55, pp.23, 2010, https://doi.org/10.1007/s11434-010-3271-8
  15. Interaction of an anticancer drug, gefitinib with human serum albumin: insights from fluorescence spectroscopy and computational modeling analysis vol.6, pp.94, 2007, https://doi.org/10.1039/c6ra12019a