DOI QR코드

DOI QR Code

Novel Extended π-Conjugated Dendritic Zn(II)-porphyrin Derivatives for Dye-sensitized Solar Cell Based on Solid Polymeric Electrolyte: Synthesis and Characterization

  • Kang, Min-Soo (Center for Smart Light-Harvesting Materials and Department of Advanced Materials, Hannam University) ;
  • Oh, Jae-Buem (Center for Smart Light-Harvesting Materials and Department of Advanced Materials, Hannam University) ;
  • Roh, Soo-Gyun (Center for Smart Light-Harvesting Materials and Department of Advanced Materials, Hannam University) ;
  • Kim, Mi-Ra (Center for Plastic Information System, Pusan National University) ;
  • Lee, Jin-Kook (Department of Polymer Science and Engineering, Pusan National University) ;
  • Jin, Sung-Ho (Center for Plastic Information System, Pusan National University) ;
  • Kim, Hwan-Kyu (Center for Smart Light-Harvesting Materials and Department of Advanced Materials, Hannam University)
  • Published : 2007.01.20

Abstract

We have designed and synthesized three Zn(II)-porphyrin derivatives, such as Zn(II) porphyrin ([G-0]Zn-P1) and aryl ether-typed dendron substituted Zn(II)-porphyrin derivatives ([G-1]Zn-P1 and [G-1]Zn-P-CN1). Their chemical structures were characterized by 1H-NMR, FT-IR, UV-vis absorption, EI-mass, and MALDI-TOF mass spectroscopies. Their electrochemical properties were studied by cyclic voltammetry measurement. These Zn(II)-porphyrin derivatives have been used to fabricate dye-sensitized solar cells (DSSCs) based on solid polymeric electrolytes as dye sensitizers and their device performances were evaluated by comparing with that of a standard Ru(II) complex dye. [G-1]Zn-P-CN1 showed the enhanced power conversion efficiency than those of other porphyrin derivatives, as expected. Short-circuit photocurrent density (Jsc), open-circuit voltage (Voc), fill factor (FF), and power conversion efficiency (η) of solid-typed DSSC for [G-1]Zn-P-CN1 were evaluated to be Jsc = 11.67 mA/cm2, Voc = 0.51 V, FF = 0.46, and η = 2.76%, respectively.

Keywords

References

  1. Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M. J. Am. Chem. Soc. 2001, 123, 1613
  2. Cao, F.; Oskam, G.; Searson, P. C. J. Phys. Chem. 1995, 99, 17071 https://doi.org/10.1021/j100047a003
  3. Matsumoto, M.; Miyazaki, H.; Matsuhiro, K.; Kumashiro, Y.; Takaoka, Y. Solid State Ionics 1996, 89, 263 https://doi.org/10.1016/0167-2738(96)00347-5
  4. Kubo, W.; Kitamura, T.; Hanabusa, K.; Wada, Y.; Yanagida, S. Chem. Commun. 2002, 4, 374
  5. Kay, A.; Humphry-Baker, R.; Gratzel, M. J. Phys. Chem. 1994, 98, 952
  6. Cherian, S.; Wamser, C. C. J. Phys. Chem. B 2000, 104, 3624 https://doi.org/10.1021/jp994459v
  7. Wang, Q.; Campbell, M. W.; Bonfantani, E. E.; Jolley, K. W.; Officer, D. L.; Walsh, P. J.; Gordon, K.; Humphry-Baker, R.; Nazeeruddinn, M. K.; Gratzel, M. J. Phys. Chem. B 2005, 109, 15397 https://doi.org/10.1021/jp052877w
  8. Wamser, C. C.; Kim, H. S.; Lee, J. K. Opt. Mat. 2002, 21, 221 https://doi.org/10.1016/S0925-3467(02)00140-4
  9. Campbell, W. M.; Burrell, A. K.; Officer, D. L.; Jolley, K. W. Coord. Chem. Rev. 2004, 248, 1363
  10. Tachibana, Y.; Haque, S. A.; Mercer, I. P.; Durrant, J. R.; Klug, D. R. J. Phys. Chem. B 2000, 104, 1198 https://doi.org/10.1021/jp992774b
  11. Hawker, C. J.; Frechet, J. M. J. J. Am. Chem. Soc. 1990, 112, 7638 https://doi.org/10.1021/ja00177a027
  12. Lee, C. S.; Lindsey, J. S. Tetrahedron 1994, 50, 133
  13. Ka, J.-W.; Kim, H. K. Tetrahedron Lett. 2004, 45, 4519 https://doi.org/10.1016/j.tetlet.2004.04.051
  14. Oh, J. B.; Nah, M. K.; Kim, Y. H.; Kim, H. K. J. Lumin. 2005, 111, 255 https://doi.org/10.1016/j.jlumin.2004.10.006
  15. Oh, J. B.; Nah, M. K.; Kim, Y. H.; Kang, M. S.; Kim, H. K. Adv. Funct. Mater. in press (2007)
  16. Oh, J. B.; Paik, K. L.; Ka, J. W.; Roh, S. G.; Nah, M. K.; Kim, H. K. Mater. Sci. Eng. C 2004, 24, 257 https://doi.org/10.1016/j.msec.2003.09.054

Cited by

  1. Novel substituted porphyrins: synthesis, characterization and photocatalytic activity of their TiO2-based composites vol.88, pp.3-4, 2017, https://doi.org/10.1007/s10847-017-0724-6
  2. Photovoltaics literature survey (No. 55) vol.15, pp.5, 2007, https://doi.org/10.1002/pip.776
  3. Synthetic Aspects of Porphyrin Dendrimers vol.2009, pp.28, 2009, https://doi.org/10.1002/ejoc.200900512
  4. Influence of Silver Salt Types on Formation of Silver Cluster Ions in MALDI with DHB as Matrix vol.28, pp.12, 2007, https://doi.org/10.5012/bkcs.2007.28.12.2508
  5. Anchoring Cadmium Chalcogenide Quantum Dots (QDs) onto Stable Oxide Semiconductors for QD Sensitized Solar Cells vol.28, pp.6, 2007, https://doi.org/10.5012/bkcs.2007.28.6.953
  6. Synthesis and Properties of Hexyl End-Capped Thiophene Oligomers Containing Anthracene Moiety in the Center vol.28, pp.7, 2007, https://doi.org/10.5012/bkcs.2007.28.7.1175
  7. Porphyrins and phthalocyanines in solar photovoltaic cells vol.14, pp.9, 2010, https://doi.org/10.1142/s1088424610002689
  8. Photovoltaic Performance of Dye-sensitized Solar Cells assembled with Hybrid Composite Membrane based on Polypropylene Non-woven Matrix vol.32, pp.2, 2007, https://doi.org/10.5012/bkcs.2011.32.2.605
  9. Synthesis and Characterization of Bis-Thienyl-9,10-anthracenes Containing Electron Withdrawing 2-Cyanoacrylic Acid or 2-Methylenemalononitrile Group vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.3081
  10. Novel D-π-A structured Zn(ii)-porphyrin dyes with bulky fluorenyl substituted electron donor moieties for dye-sensitized solar cells vol.1, pp.34, 2007, https://doi.org/10.1039/c3ta11818e
  11. Cosensitization of Structurally Simple Porphyrin and Anthracene-Based Dye for Dye-Sensitized Solar Cells vol.10, pp.3, 2018, https://doi.org/10.1021/acsami.7b12960