DOI QR코드

DOI QR Code

Ultrafast Time-Resolved Laser Spectroscopic Studies of trans-Bis(ferrocene-carboxylato)(tetraphenyl-porphyrinato)tin(IV): Intramolecular Electron-Transfer Dynamics

  • Jang, Joon-Hee (Department of Chemistry, Chungnam National University) ;
  • Kim, Hee-Jung (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Kim, Hee-Joon (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Kim, Chul-Hoon (Department of Chemistry, Pohang University of Science and Technology) ;
  • Joo, Tai-Ha (Department of Chemistry, Pohang University of Science and Technology) ;
  • Cho, Dae-Won (Department of Chemistry, Chosun University) ;
  • Yoon, Min-Joong (Department of Chemistry, Chungnam National University)
  • Published : 2007.11.20

Abstract

Photophysical properties of a newly-synthesized porphyrin derivative, trans-bis(ferrocene carboxylato)- (5,10,15,20-tetraphenylporphyrinato)tin(IV) [Sn(TPP)(FcCOO)2] were investigated by means of steady-state and fs-time resolved laser spectroscopic techniques, and compared with those of a standard molecule, trans-dichloro( 5,10,15,20-tetraphenyl-porphrinato)tin(IV) [Sn(TPP)Cl2]. The fluorescence spectrum of Sn(TPP)- (FcCOO)2 was observed to exhibit dual emission bands originating from the S2-state and the S1-state, which was greatly quenched as compared to those of Sn(TPP)Cl2. The fs-time resolved fluorescence and transient absorption spectroscopic measurements revealed that the fluorescence quenching is due to formation of the long-lived charge transfer state by intramolecular electron transfer from ferrocene to the S2-excited SnTPP in addition to the enhanced non-radiative deactivation processes.

Keywords

References

  1. Arnold, D. P.; Block, J. Coord. Chem. Rev. 2004, 248, 299 https://doi.org/10.1016/j.ccr.2004.01.004
  2. Sanders, J. K. M.; Bampos, N.; Clyde-Watson, Z.; Darling, S. L.; Hawley, J. C.; Kim, H.-J.; Mak, C. C.; Webb, S. J. In The Porphyrin Handbook, Vol. 3; Kadish, K. M.; Smith, K. M.; Guilard, R., Eds.; Academic Press: San Diego, 2000; p 1
  3. Kim, H.-J.; Bampos, N.; Sanders, J. K. M. J. Am. Chem. Soc. 1999, 121, 8120
  4. Redman, J. E.; Feeder, N.; Teat, S. J.; Sanders, J. K. M. Inorg. Chem. 2001, 40, 2486 https://doi.org/10.1021/ic001038f
  5. Kumar, A. A.; Giribabu, L.; Reddy, D. R.; Maiya, B. G. Inorg. Chem. 2001, 40, 6757 https://doi.org/10.1021/ic010179u
  6. Langford, S. J.; Woodward, C. P. Collect. Czech. Chem. Commun. 2004, 69, 996 https://doi.org/10.1135/cccc20040996
  7. Hunter, C. A.; Tomas, S. J. Am. Chem. Soc. 2006, 128, 8975 https://doi.org/10.1021/ja061928f
  8. Fallon, G. D.; Lee, M. A.-P.; Langford, S. J.; Nichols, P. J. Org. Lett. 2002, 4, 1895
  9. Kim, H.-J.; Jo, H. J.; Kim, J.; Kim, S.-Y.; Kim, D.; Kim, K. Cryst. Eng. Comm. 2005, 7, 417 https://doi.org/10.1039/b504841a
  10. Song, Y.; Yang, Y.; Medforth, C. J.; Pereira, E.; Singh, A. K.; Xu, H.; Jiang, Y.; Brinker, C. J.; Van Swol, F.; Shelnutt, J. A. J. Am. Chem. Soc. 2004, 126, 635 https://doi.org/10.1021/ja037474t
  11. Wang, H.; Song, Y.; Medforth, C. J.; Shelnutt, J. A. J. Am. Chem. Soc. 2006, 128, 9284 https://doi.org/10.1021/ja0619859
  12. Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Shaibani, R. Tetrahedron 2004, 60, 6105 https://doi.org/10.1016/j.tet.2004.05.069
  13. Handman, J.; Harriman, A.; Porter, G. Nature 1984, 307, 534 https://doi.org/10.1038/307534a0
  14. Jang, J. H.; Jeon, K.-S.; Oh, S.; Kim, H.-J.; Asahi, T.; Masuhara, H.; Yoon, M. Chem. Mater. 2007, 19, 1984 https://doi.org/10.1021/cm0629863
  15. Philippova, T. O.; Galkin, B. N.; Golovenko, N. Y.; Zhilina, Z. I.; Vodzinskii, S. V. J. Porph. Phthalo. 2000, 4, 243 https://doi.org/10.1002/(SICI)1099-1409(200004/05)4:3<243::AID-JPP201>3.0.CO;2-D
  16. Embleton, M. L.; Nair, S. P.; Cookson, B. D.; Wilson, M. J. Antimicrob. Chemother. 2002, 50, 857 https://doi.org/10.1093/jac/dkf209
  17. Chosrowjan, H.; Tanigichi, S.; Okada, T.; Takagi, S.; Arai, T.; Tokumaru, K. Chem. Phys. Lett. 1995, 242, 644 https://doi.org/10.1016/0009-2614(95)00790-B
  18. Mataga, N.; Shibata, Y.; Chosrowjan, H.; Yoshida, N.; Osuka, A. J. Phys. Chem. B 2000, 104, 4001 https://doi.org/10.1021/jp9941256
  19. Fujitsuka, M.; Cho, D. W.; Shiragami, T.; Yasuda, M.; Majima, T. J. Phys. Chem. B 2006, 110, 9368 https://doi.org/10.1021/jp062023r
  20. Chaniotakis, N. A.; Park, S. B.; Meyerhoff, M. E. Analytical Chemistry 1989, 61, 566 https://doi.org/10.1021/ac00181a013
  21. Santos, E. M. G.; Arauijo, A. N.; Couto, C. M. C. M.; Montenegro, M. C. B. S. M. Electroanalysis 2005, 17, 1945 https://doi.org/10.1002/elan.200403273
  22. Kim, H. J.; Jeon, W. S.; Lim, J. H.; Hong, C. S.; Kim, H.-J. Polyhedron 2007, 26, 2517 https://doi.org/10.1016/j.poly.2006.12.023
  23. Crossley, M. P.; Thordarson, P.; Wu, R. A. S. J. Chem. Soc., Perkin Trans. I 2001, 2294
  24. Jiang, J.; Jin, X.; Li, C.; Gu, Z. J. Coord. Chem. 1995, 35, 313 https://doi.org/10.1080/00958979508024043
  25. Kim, Y.; Yoon, M.; Kim, D. J. Photochem. Photobiol. A : Chem. 2001, 138, 167 https://doi.org/10.1016/S1010-6030(00)00404-4
  26. Choi, C.-S.; Jeon, K.-S.; Lee, K.-H.; Yoon, M.; Kwak, M.; Lee, S. W.; Kim, I. T. Bull. Korean Chem. Soc. 2006, 27, 1601 https://doi.org/10.5012/bkcs.2006.27.10.1601
  27. Yoon, M.-C.; Jeong, D. H.; Cho, S.; Kim, D.; Rhee, H.; Joo, T. J. Chem. Phys. 2003, 118, 164 https://doi.org/10.1063/1.1524175
  28. Furube, A.; Asahi, T.; Masuhara, H.; Yamashita, H.; Anpo, M. J. Phys. Chem. B 1999, 103, 3120 https://doi.org/10.1021/jp984162h
  29. Asahi, T.; Furube, A.; Fukimura, H.; Ichikawa, M.; Masuhara, H. Rev. Sci. Instrum. 1998, 69, 361 https://doi.org/10.1063/1.1148668
  30. Buchler, J. W. In The Porphyrins; Dolphin, D., Ed.; Academic Press: New York, 1978; Volume I, Chapter 10
  31. Ohkubo, K.; Sintic, P. J.; Tkachenko, N. V.; Lemmetyinen, H.; Wenbo, E.; Ou, Z.; Shao, J.; Kadish, K. M.; Crossley, M. J.; Fukuzumi, S. Chem. Phys. 2006, 326, 3 https://doi.org/10.1016/j.chemphys.2006.01.034
  32. Kadish, K. M.; Xu, Q. Y.; Maiya, G. B.; Barbe, J.-M.; Guilard, R. J. Chem. Soc., Dalton Trans. 1989, 1531
  33. Tokumaru, K. J. Porph. Phthalo. 2001, 5, 77 https://doi.org/10.1002/1099-1409(200101)5:1<77::AID-JPP302>3.0.CO;2-X

Cited by

  1. Photophysics of Soret-Excited Tin(IV) Porphyrins in Solution vol.117, pp.33, 2013, https://doi.org/10.1021/jp406025j
  2. Corrolates Including Chiral and Ferrocenyl Derivatives vol.52, pp.4, 2013, https://doi.org/10.1021/ic302335c
  3. Tuning Reductive and Oxidative Photoinduced Electron Transfer in Amide-Linked Anthraquinone-Porphyrin-Ferrocene Architectures vol.2014, pp.11, 2014, https://doi.org/10.1002/ejic.201400118
  4. Aminoferrocene and Ferrocene Amino Acid as Electron Donors in Modular Porphyrin-Ferrocene and Porphyrin-Ferrocene-Porphyrin Conjugates vol.2014, pp.18, 2014, https://doi.org/10.1002/ejic.201402138
  5. Regioselective Reactivity of an Asymmetric Tetravalent Di[dihydroxotin(IV)] Bis-Porphyrin Host Driven by Hydrogen-Bond Templation vol.14, pp.35, 2008, https://doi.org/10.1002/chem.200801775
  6. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  7. Crystal structure of bis(benzoato-κO)[5,15-diphenyl-10,20-bis(pyridin-4-yl)porphyrinato-κ4N,N′,N′′,N′′′]tin(IV) vol.4, pp.6, 2007, https://doi.org/10.1107/s2414314619007879
  8. Photoinduced electron transfer upon supramolecular complexation of (porphyrinato)Sn-viologen with cucurbit[7]uril vol.18, pp.8, 2007, https://doi.org/10.1039/c9pp00145j