DOI QR코드

DOI QR Code

Migration Behavior of Bead-spring Dumbbell Models under Microchannel Flow from Dissipative Particle Dynamics Simulations

  • Oh, Kwang-Jin (Supercomputing Center, Korea Institute of Science and Technology Information)
  • Published : 2007.12.20

Abstract

Dissipative particle dynamics simulations of bead-spring dumbbell models under microchannel flow were performed and the effects of the deformation on their migration behavior were discussed. Dumbbells were found to migrate toward the walls or the channel center depending on the stiffness. Stiff dumbbells migrated toward the walls. In any cases, the dumbbells were found to have a stronger tendency to move toward the channel center in more deformable conditions.

Keywords

References

  1. Agarwal, U. S.; Dutta, A.; Mashelkar, R. A. Chem. Eng. Sci. 1994, 49, 1693 https://doi.org/10.1016/0009-2509(94)80057-X
  2. Nitsche, L. C.; Hinch, E. J. J. Fluid Mech. 1997, 332, 1 https://doi.org/10.1017/S0022112096003369
  3. Schiek, R. L.; Shaqfeh, E. S. G. J. Fluid Mech. 1997, 332, 23 https://doi.org/10.1017/S0022112096003291
  4. Fan, X.; Phan-Thien, N.; Yong, N. T.; Wu, X.; Xu, D. Phys. Fluids 2003, 15, 11 https://doi.org/10.1063/1.1522750
  5. Jendrejack, R. M.; Schwartz, D. C.; de Pablo, J. J.; Graham, M. D. J. Chem. Phys. 2004, 120, 2513 https://doi.org/10.1063/1.1637331
  6. Ma, H.; Graham, M. D. Phys. Fluids 2005, 17, 83103 https://doi.org/10.1063/1.2011367
  7. Usta, O. B.; Ladd, A, J. C.; Butler, J. E. J. Chem. Phys. 2005, 122, 94902 https://doi.org/10.1063/1.1854151
  8. Khare, R.; Graham, M. D.; de Pablo, J. J. Phys. Rev. Lett. 2006, 96, 224505 https://doi.org/10.1103/PhysRevLett.96.224505
  9. Usta, O. B.; Butler, J. E.; Ladd, A. J. C. Phys. Fluids 2006, 18, 31703 https://doi.org/10.1063/1.2186591
  10. Hernandez-Otiz, J. P.; Ma, H.; de Pablo, J. J.; Graham, M. D. Phys. Fluids 2006, 18, 123101 https://doi.org/10.1063/1.2397571
  11. Millan, J. A.; Jiang, W.; Laradji, M.; Wang, Y. J. Chem. Phys. 2007, 126, 124905 https://doi.org/10.1063/1.2711435
  12. Koch, M.; Evans, A.; Brunnschweiler, A. Microfluidic Technology and Applications; Research Studies Press Ltd.: Hertfordshire, 2000
  13. Ferzinger, J. H.; Peric, M. Computational Methods for Fluid Dynamics; Springer-Verlag: Heidelberg, 2002
  14. Smith, D. E.; Babcock, H. P.; Chu, S. Science 1999, 283, 1724 https://doi.org/10.1126/science.283.5408.1724
  15. Bustamante, C.; Marko, J. F.; Siggia, E. D.; Smith, S. Science 1994, 265, 1500
  16. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford; Clarendon, 1987
  17. Hoogerbrugge, P. J.; Koelman, J. M. V. A. Europhys. Lett. 1992, 19, 155 https://doi.org/10.1209/0295-5075/19/3/001
  18. Koelman, J. M. V. A.; Hoogerbrugge, P. J. Europhys. Lett. 1993, 21, 369 https://doi.org/10.1209/0295-5075/21/3/019
  19. Groot, R. D.; Warren, P. B. J. Chem. Phys. 1997, 107, 4423 https://doi.org/10.1063/1.474784
  20. Lowe, C. P. Europhys. Lett. 1999, 47, 145 https://doi.org/10.1209/epl/i1999-00365-x
  21. Ladd, A. J. C. J. Fluid Mech. 1994, 271, 285 https://doi.org/10.1017/S0022112094001771
  22. Alhrichs, P.; Dunweg, B. J. Chem. Phys. 1999, 111, 8225 https://doi.org/10.1063/1.480156
  23. Ladd, J. C.; Verberg, R. J. Stat. Phys. 2001, 104, 1191 https://doi.org/10.1023/A:1010414013942
  24. Kong, Y.; Manke, C. W.; Madden, W. G.; Schlijper, A. G. Int. J. Thermophys. 1994, 15, 1093 https://doi.org/10.1007/BF01458818
  25. Schlijper, A. G.; Hoogerbrugge, P. J.; Manke, C. W. J. Rheol. 1995, 39, 567 https://doi.org/10.1122/1.550713
  26. Schlijper, A. G.; Hoogerbrugge, P. J.; Manke, C. W. J. Rheol. 1995, 39, 567 https://doi.org/10.1122/1.550713
  27. Kong, Y.; Manke, C. W.; Madden, W. G.; Schlijper, A. G. J. Chem. Phys. 1997, 107, 1 https://doi.org/10.1063/1.474366
  28. Spenley, N. A. Europhys. Lett. 2000, 49, 534 https://doi.org/10.1209/epl/i2000-00183-2
  29. Lowe, C. P.; Bakker, A. F.; Dreischor, M. W. Europhys. Lett. 2004, 67, 397 https://doi.org/10.1209/epl/i2003-10299-3
  30. Symeonidis, V.; Karniadakis, G. E.; Caswell, B. Phys. Rev. Lett. 2005, 95, 76001 https://doi.org/10.1103/PhysRevLett.95.076001
  31. Symeonidis, V.; Karniadakis, G. E.; Caswell, B. Bull. Pol. Acad. Sci. Tech. Sci. 2005, 53, 395
  32. Chen, L.-J.; Lu, Z.-Y.; Qian, H.-J.; Li, Z.-S.; Sun, C.-C. J. Chem. Phys. 2005, 122, 104907 https://doi.org/10.1063/1.1860351
  33. Symeonidis, V.; Karniadakis, G. E.; Caswell, B. J. Chem. Phys. 2006, 125, 184902 https://doi.org/10.1063/1.2360274
  34. Jiang, W.; Huang, J.; Wang, Y.; Laradji, M. J. Chem. Phys. 2007, 126, 44901 https://doi.org/10.1063/1.2428307
  35. Bird, R. B.; Curtiss, C. F.; Armstrong, R. C.; Hassanger, O. Dynamics of Polymeric Liquids, Kinetic Theory; Wiley: New York, 1987; Vol. 2
  36. Kroger, M. Phys. Rep. 2004, 390, 453 https://doi.org/10.1016/j.physrep.2003.10.014
  37. Andersen, H. C. J. Chem. Phys. 1980, 72, 2384 https://doi.org/10.1063/1.439486
  38. Nikunen, P.; Karttunen, M.; Vatturainen, I. Comp. Phys. Comm. 2003, 153, 407 https://doi.org/10.1016/S0010-4655(03)00202-9
  39. Oh, K. J.; Klen, M. L. Comp. Phys. Comm. 2006, 174, 560 https://doi.org/10.1016/j.cpc.2005.12.002

Cited by

  1. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450