DOI QR코드

DOI QR Code

Single-Step Solid-State Synthesis of CeMgAl11O19:Tb Phosphor

  • Park, Byoung-Kyu (College of Environment and Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Lee, Seoung-Soo (College of Environment and Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Kang, Jun-Kun (College of Environment and Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Byeon, Song-Ho (College of Environment and Applied Chemistry, Institute of Natural Sciences, Kyung Hee University)
  • Published : 2007.09.20

Abstract

The green-emitting CeMgAl11O19:Tb (CMAT) phosphor has been prepared at 1200 °C by the simple solid-state reaction using AlF3 as a self-flux. This preparation temperature is much lower than those (1500-1700 °C) for conventional solid-state reaction and spray pyrolysis method. In particular, the complete process to produce high-quality phosphor particles was carried out through the single-step heat treatment of the mixture of corresponding oxide-type metal sources. An addition of AlF3 as a self-flux significantly decreased the crystallization temperature of CMAT with plate-like shape. The particle morphology could be controlled from plate-like to spherical by using H3BO3 as an additional flux. Thus, an optimal morphology and luminescence characteristics of CMAT were achieved when both AlF3 and H3BO3 fluxes were simultaneously used. Compared with conventional solid-state process, which is accompanied by the calcination step(s), and other alternative liquid solution techniques such as sol-gel method and spray pyrolysis, no use of active precursors and liquid media that are harmful to the environment is a distinctive advantage for the industrial purpose.

Keywords

References

  1. Verstegen, J. M. P. J.; Radielovic, D.; Vrenken, L. E. J. Electrochem. Soc. 1974, 121, 1627 https://doi.org/10.1149/1.2401757
  2. Smets, B. M. J. Mater. Chem. Phys. 1987, 16, 283 https://doi.org/10.1016/0254-0584(87)90103-9
  3. Zhang, J.; Zhang, Z.; Tang, Z.; Lin, Y. Mater. Chem. Phys. 2001, 72, 81 https://doi.org/10.1016/S0254-0584(01)00301-7
  4. Ronda, C. R. J. Lumin. 1997, 72-74, 49
  5. Laville, F.; Lejus, A. M. J. Cryst. Growth 1983, 63, 426 https://doi.org/10.1016/0022-0248(83)90237-3
  6. Jia, P. Y.; Yu, M.; Lin, J. J. Solid State Chem. 2005, 178, 2734 https://doi.org/10.1016/j.jssc.2005.06.019
  7. Kang, Y. C.; Lenggoro, I. W.; Park, S. B.; Okuyama, K. Appl. Phys. A 2001, 72, 103 https://doi.org/10.1007/s003390000594
  8. Jung, D. S.; Hong, S. K.; Lee, H. J.; Kang, Y. C. J. Alloys Compd. 2005, 398, 309 https://doi.org/10.1016/j.jallcom.2005.03.002
  9. Jung, D. S.; Hong, S. K.; Ju, S. H.; Lee, H. J.; Kang, Y. C. Jpn. J. Appl. Phys. 2005, 44, 4975 https://doi.org/10.1143/JJAP.44.4975
  10. Jung, D. S.; Hong, S. K.; Ju, S. H.; Koo, H. Y.; Kang, Y. C. Jpn. J. Appl. Phys. 2006, 45, 116 https://doi.org/10.1143/JJAP.45.116
  11. Kang, Y. C.; Lenggoro, I. W.; Okuyama, K.; Park, S. B. J. Electrochem. Soc. 1999, 146, 1227 https://doi.org/10.1149/1.1391750
  12. Golego, N.; Studenikin, S. A.; Cocivera, M. J. Electrochem. Soc. 2000, 147, 1993 https://doi.org/10.1149/1.1393473
  13. Lee, S.-S.; Kim, H. J.; Byeon, S.-H.; Park, J.-C.; Kim, D.-K. Ind. Eng. Chem. Res. 2005, 44, 4300 https://doi.org/10.1021/ie048953j
  14. Sommerdijk, J. L.; Verstegen, J. M. P. J. J. Lumin. 1974, 9, 415 https://doi.org/10.1016/0022-2313(74)90034-9
  15. Stevels, A. L. N.; Schrama de Pauw, A. D. M. J. Electrochem. Soc. 1976, 123, 691 https://doi.org/10.1149/1.2132911
  16. Verstegen, J. M. P. J.; Sommerdijk, J. L.; Verriet, J. G. J. Lumin. 1973, 6, 425 https://doi.org/10.1016/0022-2313(73)90010-0
  17. Kahn, A.; Lejus, A. M.; Madsac, M.; Thery, J.; Vivien, D.; Bernier, J. C. J. Appl. Phys. 1981, 52, 6864 https://doi.org/10.1063/1.328680

Cited by

  1. Preparation and investigation of rare earth magnesium hexaaluminate solid solutions vol.49, pp.5, 2014, https://doi.org/10.3103/S1068337214050065
  2. Luminescence properties and energy transfer in Ca3(PO4)2:Ce3+, Tb3+ phosphors vol.120, pp.1, 2015, https://doi.org/10.1007/s00339-015-9188-y
  3. Rare Earth Elements Recovery from Waste Fluorescent Lamps: A Review vol.45, pp.7, 2015, https://doi.org/10.1080/10643389.2014.900240
  4. :Tb Phosphor. vol.39, pp.3, 2008, https://doi.org/10.1002/chin.200803224
  5. Investigation of a New Red-Emitting, Eu3+-Activated MgAl2O4 Phosphor vol.28, pp.12, 2007, https://doi.org/10.5012/bkcs.2007.28.12.2477
  6. Blue to bluish-green tunable phosphor Sr2LiSiO4F:Ce3+,Tb3+ and efficient energy transfer for near-ultraviolet light-emitting diodes vol.1, pp.3, 2007, https://doi.org/10.1088/2053-1591/1/3/035005
  7. Structural and luminescence behavior of Gd2O3:Er3+ phosphor synthesized by solid state reaction method vol.126, pp.20, 2007, https://doi.org/10.1016/j.ijleo.2015.06.045
  8. Improving the angular color uniformity and the lumen output for multi-chip white LED lamps by green Ce0.67Tb0.33MgAl11O19:Ce,Tb phosphor vol.39, pp.7, 2007, https://doi.org/10.1080/02533839.2016.1208062