DOI QR코드

DOI QR Code

Synthesis, Crystal Structure and Density Functional Calculations on 1-Phenyl-3-p-fluorophenyl-5-p-chlorophenyl-2-pyrazoline

  • Zhao, Pu Su (New Materials & Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology) ;
  • Li, Yu Feng (New Materials & Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology) ;
  • Guo, Huan Mei (Department of Chemistry, Weifang University) ;
  • Jian, Fang Fang (New Materials & Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology) ;
  • Wang, Xian (New Materials & Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology)
  • Published : 2007.09.20

Abstract

1-Phenyl-3-p-fluorophenyl-5-p-chlorophenyl-2-pyrazoline has been synthesized and characterized by elemental analysis, IR, UV-Vis and X-ray single crystal diffraction. Density functional calculations show that B3LYP/6-311G** method can reproduce the structural parameters. The electronic absorption spectra have been predicted based on the optimized structure by using 6-311G** and 6-311++G** basis sets and compared with the experimental values. The results indicate that TD-DFT method can only predict the electronic absorption spectra of the system studied here approximately. On the basis of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated, revealing the correlations between ,C0p,m,S0m,H0m and temperature.

Keywords

References

  1. Shi, W.; Qian, X. H.; Song, G. H.; Zhang, R.; Li, R. P. J. Fluor. Chem. 2000, 106, 173 https://doi.org/10.1016/S0022-1139(00)00323-7
  2. Ogunbadeniyi, A. M.; Adejare, A. J. Fluor. Chem. 2002, 114, 39 https://doi.org/10.1016/S0022-1139(01)00565-6
  3. O'Hagan, D.; Rzepa, R. S. Chem. Commun. 1997, 645
  4. Welch, J. T. Tetrahedron. 1982, 38, 871 https://doi.org/10.1016/0040-4020(82)85068-0
  5. Mason, W. T. Fluorescent and Luminescent Probes for Biological Activity: A Practical Guide to Technology for QuantitatiVe Realtime Analysis; Academic Press: San Diego, CA, 1999
  6. Takahashi, A.; Camacho, P.; Lechleiter, J. D.; Herman, B. Physiol. Rev. 1999, 79, 1089
  7. Burdette, S. C.; Walkup, G. K.; Spingler, B.; Tsien, R. Y.; Lippard, S. J. J. Am. Chem. Soc. 2001, 123, 7831 https://doi.org/10.1021/ja010059l
  8. Hirano, T.; Kikuchi, K.; Urano, Y.; Nagano, T. J. Am. Chem. Soc. 2002, 124, 6555 https://doi.org/10.1021/ja025567p
  9. Esposito, B. P.; Epsztejn, S.; Breuer, W.; Cabantchik, Z. I. Anal. Biochem. 2002, 304, 1 https://doi.org/10.1006/abio.2002.5611
  10. Rivett, D. E.; Rosevear, J.; Wilshire, J. F. K. Aust. J. Chem. 1983, 36, 1649 https://doi.org/10.1071/CH9831649
  11. Rurack, K.; Resch-Genger, U.; Bricks, J. L.; Spieles, M. Chem. Commun. 2000, 2103
  12. Fahrni, C. J.; Yang, L. C.; VanDerveer, D. G. J. Am. Chem. Soc. 2003, 125, 3799 https://doi.org/10.1021/ja028266o
  13. Sheldrick, G. M. SHELXTL, v5 Reference Manual; Siemens Analytical X-Ray Systems: Madison, WI, 1997
  14. Wilson, A. J. International Table for X-Ray Crystallography; Kluwer Academic: Dordrecht, The Netherlands, 1992; Vol. C: Tables 6.1.1.4 (pp 500-502) and 4.2.6.8 (pp 219-222)
  15. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F. J. Am. Chem. Soc. 1985, 107, 3902 https://doi.org/10.1021/ja00299a024
  16. Peng, C.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. J. Comput. Chem. 1996, 49, 17
  17. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, Jr., T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc.:Wallingford, CT, 2004
  18. Petersilka, M.; Gossmann, U. J.; Gross, E. K. U. Phys. Rev. Lett. 1966, 76,1212 https://doi.org/10.1103/PhysRevLett.76.1212
  19. Bauernschmitt, R.; Ahlrichs, R. Chem. Phys. Lett. 1996, 256, 1996
  20. Jamorski, C.; Casida, M. E.; Salahub, D. R. J .Chem. Phys. 1996, 104, 5134 https://doi.org/10.1063/1.471140
  21. Runge, E.; Gross, E. K. U. Phys. Rev. Lett. 1984, 52, 997 https://doi.org/10.1103/PhysRevLett.52.997
  22. Guo, H. M.; Jian, F. F.; Zhou, L. Y.; Zhao, P. S.; Zheng, J. Acta Cryst. 2006, E62, o4337
  23. Guo, H. M.; Jian, F. F.; Zhao, P. S.; Zhang, Y. C.; Li, Y. F. Acta Cryst. 2007, E63, o215
  24. Fahrni, C. J.; Yang, L. C.; VanDerveer, D. G. J. Am. Chem. Soc. 2003, 125, 3799 https://doi.org/10.1021/ja028266o
  25. Hunter, R. H.; Haueisen, R. H.; Irving, A. Angew. Chem. Int. Ed. Engl. 1994, 33, 566 https://doi.org/10.1002/anie.199405661
  26. Glusker, J. P.; Lewis, M.; Rossi, M. Crystal Structure Analysis for Chemistry and Biologists; VCH: New York, 1994
  27. Olsen, L.; Jorgensen, P. In Modern Electronic Structure Theory; World Science: River Edge, NJ, 1995; Vol. 2
  28. Fernando, M.; Claudio, O. A. Int. J. Quant. Chem. 103, 34, 2005 https://doi.org/10.1002/qua.20477

Cited by

  1. Synthesis, Crystal Structure, Spectra and Quantum Chemical Study on 1-Phenyl-3-(4-nitrophenyl)-5-(2-thienyl)-2-pyrazoline vol.19, pp.4, 2014, https://doi.org/10.3390/molecules19045313
  2. Synthesis and Crystal Structure Studies on 1N-Acetyl-3-Phenyl-5-(3,4,5-trimethoxyl-phenyl)-2-Pyrazoline vol.926-930, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.926-930.262
  3. Comparative study on two 2-pyrazoline derivatives with experimental and theoretical methods vol.20, pp.3, 2009, https://doi.org/10.1007/s11224-009-9436-x
  4. Comparative Studies on Two Fluoro-Substituted 2-Pyrazoline Derivatives with Experimental and Theoretical Methods vol.30, pp.5, 2007, https://doi.org/10.5012/bkcs.2009.30.5.1061
  5. Synthesis, characterization, crystal structure and ab initio studies on 5-ethoxycarbonly-6-methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine vol.72, pp.1, 2007, https://doi.org/10.1016/j.saa.2008.07.049
  6. Experimental and theoretical comparative studies on two 2-pyrazoline derivatives vol.74, pp.1, 2007, https://doi.org/10.1016/j.saa.2009.05.027
  7. Synthesis, Crystal Structure, Spectra Characterization and DFT Studies on a Di-Cycle Pyrazoline Derivative vol.31, pp.7, 2007, https://doi.org/10.5012/bkcs.2010.31.7.1875
  8. Crystal structure, spectra properties and comparative studies on a 2-pyrazoline derivative vol.94, pp.None, 2007, https://doi.org/10.1016/j.saa.2012.03.051