DOI QR코드

DOI QR Code

Molecular Modeling and Site Directed Mutagenesis of the O-Methyltransferase, SOMT-9 Reveal Amino Acids Important for Its Reaction and Regioselectivity

  • Park, So-Hyun (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Bong-Gyu (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Lee, Sun-Hee (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Lim, Yoong-Ho (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Cheong, You-Hoon (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Ahn, Joong-Hoon (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • Published : 2007.12.20

Abstract

SOMT-9 is an O-methyltransferase that utilizes quercetin to produce 3'-methoxy quercetin. In order to determine which amino acids of SOMT-9 are important for this reaction and its regioselectivity, molecular docking experiments followed by site directed mutagenesis were performed. Molecular modeling and molecular docking experiments identified several amino acid residues involved in metal binding, AdoMet binding, and substrate binding. Site-directed mutagenesis showed that Asp188 is critical for metal binding and that Lys165 assists other metal binding residues in maintaining quercetin in the proper position during the reaction. In addition, Tyr207 was shown to play an important role in the determination of the regioselectivity and Met60 was shown to be involved in formation of the hydrophobic pocket necessary for substrate binding. The molecular modeling and docking experiments discussed in this study could be applicable to future research including prediction of substrate binding and regioselectivity of an enzyme.

Keywords

References

  1. Ibrahim, R. K.; Bruneau, A.; Bantignies, B. Plant Mol. Biol. 1988, 36, 1 https://doi.org/10.1023/A:1005939803300
  2. Joshi, C. P.; Chiang, V. L. Plant Mol. Biol. 1998, 37, 663 https://doi.org/10.1023/A:1006035210889
  3. Ibdah, M.; Zhang, X.-H.; Schnot, J.; Vogt, T. J. Biol. Chem. 2003, 278, 43961 https://doi.org/10.1074/jbc.M304932200
  4. Kim, B. G.; Shin, K. H.; Lee, Y.; Hur, H.-G.; Lim, Y.; Ahn, J.-H. Biotechnol. Lett. 2005, 27, 1861 https://doi.org/10.1007/s10529-005-3893-0
  5. Kim, B. G.; Lee, Y.; Hur, H.-G.; Lim, Y.; Ahn, J.-H. Phytochemistry 2006, 67, 387 https://doi.org/10.1016/j.phytochem.2005.11.022
  6. Kim, B. G.; Kim, H.; Kim, J.-H.; Lim, Y.; Ahn, J.-H. Bull. Korean Chem. Soc. 2006, 27, 357 https://doi.org/10.5012/bkcs.2006.27.3.357
  7. Kim, B. G.; Lee, Y.; Hur, H. G.; Lim, Y.; Ahn, J.-H. Biosci. Biotech. Biochem. 2006, 70, 1269 https://doi.org/10.1271/bbb.70.1269
  8. Kim, J. H.; Kim, B. G.; Park, Y.; Han, J. H.; Lim, Y.; Ahn, J.-H. Agric. Chem. Biotechnol. 2006, 49, 114
  9. Zubieta, C.; Kota, P.; Ferrer, J.-L.; Dixon, R. F.; Noel, J. P. Plant Cell 2002, 14, 1265
  10. Zubieta, C.; He, X.-Z.; Dixon, R. F.; Noel, J. P. Nature Stru. Biol. 2001, 8, 271
  11. Ferrer, F.-L.; Zubieta, C.; Dixon, R. A.; Noel, J. P. Plant Physiol. 2005, 137, 1009 https://doi.org/10.1104/pp.104.048751
  12. Yang, H.; Ahn, J.-H.; Jeong, K. J.; Lee, S.; Lim, Y. Bull. Korean Chem. Soc. 2003, 24, 1
  13. Yang, H.; Ahn, J.-H.; Ibrahim, R. K.; Lee, S.; Lim, Y. J. Mol. Model. 2004, 23, 77 https://doi.org/10.1016/j.jmgm.2004.02.001
  14. Lee, J.-Y.; Lee, S.-A.; Kim, Y. Bull. Korean Chem. Soc. 2007, 28, 941 https://doi.org/10.5012/bkcs.2007.28.6.941
  15. Kim, B. G.; Lee, H. J.; Park, Y.; Lim, Y.; Ahn, J.-H. Plant Physiol. Biochem. 2006, 44, 236 https://doi.org/10.1016/j.plaphy.2006.05.003
  16. Laskowski, R. A.; MacArthur, M. W.; Moss, D. S.; Thornton, J. M. J. Appl. Cryst. 1993, 26, 1647

Cited by

  1. C NMR Data on Hydroxy/methoxy Flavonoids and the Effects of Substituents on Chemical Shifts vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.2101
  2. Characterization of Two Site-Specifically Modified Human Dihydrolipoamide Dehydrogenase Mutants (Pro-282 to Ala and Pro-298 to Ala) vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1119
  3. Characterization of a Naturally Occurring Mutation (Ile-358 to Thr) in Human Dihydrolipoamide Dehydrogenase of a Patient with Leigh Syndrome vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1445
  4. Characterization of Two Site-specific Mutations in Human Dihydrolipoamide Dehydrogenase vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1621
  5. Synthesis of avenanthramides using engineered Escherichia coli vol.17, pp.1, 2018, https://doi.org/10.1186/s12934-018-0896-9
  6. Flavonoid O-Diglucosyltransferase from Rice: Molecular Cloning and Characterization vol.52, pp.1, 2009, https://doi.org/10.1007/s12374-008-9002-x
  7. Sequence analysis, in silico modeling and docking studies of Caffeoyl CoA-O-methyltransferase of Populus trichopora vol.16, pp.9, 2010, https://doi.org/10.1007/s00894-010-0656-1
  8. Characterization of Two Naturally Occurring Mutations Close to Cofactors in Human Dihydrolipoamide Dehydrogenase vol.29, pp.12, 2008, https://doi.org/10.5012/bkcs.2008.29.12.2327
  9. Characterization of Two Site-Specific Human Cytosolic Thioredoxin Mutants (Pro-34 to Ala and Val) vol.30, pp.12, 2007, https://doi.org/10.5012/bkcs.2009.30.12.2869
  10. Characterization of a Naturally Occurring Mutation (Ile-12 to Thr) Close to Prosthetic Group FAD in Human Dihydrolipoamide Dehydrogenase vol.30, pp.4, 2007, https://doi.org/10.5012/bkcs.2009.30.4.777
  11. Characterization of Two Site-specifically Mutated Human Dihydrolipoamide Dehydrogenase (Leu-46 to Ala and Pro-52 to Val) vol.30, pp.9, 2009, https://doi.org/10.5012/bkcs.2009.30.9.2121
  12. Structural Modeling and Biochemical Characterization of Flavonoid O-Methyltransferase from Rice vol.30, pp.11, 2007, https://doi.org/10.5012/bkcs.2009.30.11.2803
  13. Characterization of Human Cytosolic Thioredoxin Reductase by Site-specific Mutagenesis vol.31, pp.12, 2010, https://doi.org/10.5012/bkcs.2010.31.12.3515
  14. Characterization of Three Site-specific Mutations in Human Dihydrolipoamide Dehydrogenase (Gly-42 to Ala, Gly-43 to Ala and Val-48 to Trp) vol.32, pp.12, 2007, https://doi.org/10.5012/bkcs.2011.32.12.4427
  15. Characterization of Two Naturally Occurring Mutations (Gly-101 Deletion and Glu-340 to Lys Substitution) in Human Dihydrolipoamide Dehydrogenase of a Patient with Metabolic Acidosis vol.33, pp.8, 2012, https://doi.org/10.5012/bkcs.2012.33.8.2477
  16. Characterization of Human Cytosolic Thioredoxin Mutants with Increasing Side Chain Volumes at Residue-33 vol.33, pp.10, 2007, https://doi.org/10.5012/bkcs.2012.33.10.3169