DOI QR코드

DOI QR Code

Energy Transfer Pathway in Luminescent Lanthanide Complexes Based on Dansyl-N-methylaminobenzoic Acid through Intramolecular Charge Transfer State for Near Infrared Emission

  • Published : 2007.08.20

Abstract

We have investigated the photophysical properties of dansyl-N-methylaminobenzoic acid (DABAH) as a ligand and its lanthanide (Ln3+)-cored complexes (Ln3+-(DABA)3(terpy)) in order to determine the main energy transfer pathway for sensitized near infrared emission of Ln3+ ions (Ln3+ = Nd3+ and Er3+) in Ln3+- (DABA)3(terpy). The fluorescence spectrum of DABAH shows a large Stokes shift with increasing solvent polarity. This large Stokes shift might be due to the formation of a twisted intramolecular charge transfer (TICT) state, as demonstrated by the large dipole moment in the excited state. It is in good agreement with the result that the phosphorescence even in the Gd3+-cored complex based on the DABAH ligand was not observed, maybe due to the highly forbidden character of the S1 → T1 transition in the DABAH ligand. A short decay component (ca. 1 ns) was observed in Er3+-(DABA)3(terpy) whereas the fluorescence lifetimes of DABAH and its Gd3+-(DABA)3(terpy) are observed about ~10 ns. The short component could be originated from the energy transfer process between the ligand and the Ln3+ ion. Based on the fluorescence of DABAH its Ln3+- (DABA)3(terpy), the sensitization of Ln3+ luminescence in the Ln3+-(DABA)3(terpy) takes place by the energy transfer via the TICT state of DABAH in the excited singlet state rather than via the excited triplet state.

Keywords

References

  1. Kim, H. K.; Roh, S.-G.; Hong, K.-S.; Ka, J.-W.; Baek, N. S.; Oh, J. B.; Nah, M. K.; Cha, Y. H.; Ko, J. Macromol. Res. 2003, 11, 133 https://doi.org/10.1007/BF03218343
  2. Kim, H. K.; Oh, J. B.; Baek, N. S.; Roh, S.-G.; Nah, M. K.; Kim, Y. H. Bull. Korean Chem. Soc. 2005, 26, 201 https://doi.org/10.5012/bkcs.2005.26.2.201
  3. Baek, N. S.; Kim, Y. H.; Roh, S.-G.; Kwak, B. K.; Kim, H. K. Adv. Funct. Mater. 2006, 16, 1873 https://doi.org/10.1002/adfm.200500835
  4. Kim, Y. H.; Baek, N. S.; Oh, J. B.; Nah, M. K.; Roh, S. G.; Song, B. J.; Kim, H. K. Macromol. Res. 2007, 15, 272 https://doi.org/10.1007/BF03218787
  5. Shavaleev, N. M.; Moorcraft, L. P.; Pope, S. J. A.; Bell, Z. R.; Faulkner, S.; Ward, M. D. Chem. Eur. J. 2003, 9, 5283 https://doi.org/10.1002/chem.200305132
  6. Kawa, M.; Frechet, J. M. J. Chem. Mater. 1998, 10, 286 https://doi.org/10.1021/cm970441q
  7. Destri, S.; Porzio, W.; Meinardi, F.; Tubino, R.; Salerno, G. Macromol. 2003, 36, 273 https://doi.org/10.1021/ma025590v
  8. Kang, T.-S.; Harrison, B. S.; Foley, T. J.; Knefely, A. S.; Boncella, J. M.; Reynolds, J. R.; Schanze, K. S. Adv. Mater. 2003, 15, 1093 https://doi.org/10.1002/adma.200304692
  9. Reinhoudt, D. N.; van Veggel, F. C. J. M.; Werts, M. H. V.; Geurts, F. A. J. J.; Hofstraat, W. J. Phys. Chem. A 2000, 104, 5457 https://doi.org/10.1021/jp994286+
  10. Slooff, L. H.; Polman, A.; Cacialli, F.; Friend, R. H.; Hebbink, G. A.; van Veggel, F. C. J. M.; Reinhoudt, D. N. Appl. Phys. Lett. 2001, 78, 2122 https://doi.org/10.1063/1.1359782
  11. Oh, J. B.; Nah, M.-K.; Kim, Y. H.; Kim, H. K. J. Luminescence 2005, 111, 255 https://doi.org/10.1016/j.jlumin.2004.10.006
  12. Oh, J. B.; Nah, M.-K.; Kim, Y. H.; Kang, M. S.; Ka, J.-W.; Kim, H. K. Adv. Funct. Mater. 2007, 17, 413 https://doi.org/10.1002/adfm.200600451
  13. Yang, C.; Fu, L.-M.; Wang, Y.; Zhang, J.-P.; Ai, W.-T.; Wong, X.-C.; Qiao, Y.-F.; Zuo, B.-S.; Gui, L.-L. Angew. Chem. Int. Ed. 2004, 43, 5010 https://doi.org/10.1002/anie.200454141
  14. Hebbink, G. A.; Klink, S. I.; Grave, L.; Alink, P. G. B. O.; van Veggel, F. C. J. M. ChemPhysChem 2002, 3, 1014 https://doi.org/10.1002/cphc.200290002
  15. Vicinelli, V.; Ceroni, P.; Maestri, M.; Balzani, V.; Gorka, M.; Vogtle, F. J. Am. Chem. Soc. 2002, 124, 6461 https://doi.org/10.1021/ja017672p
  16. Ren, H.; Gao, F.; Tong, Z.; Yan, Y. Chem. Phys. Lett. 1999, 307, 55 https://doi.org/10.1016/S0009-2614(99)00495-9
  17. Ding, L.; Fang, Y.; Jiang, L.; Gao, L.; Yin, X. Thin Solid Films 2005, 478, 318 https://doi.org/10.1016/j.tsf.2004.07.013
  18. Li, Y.-H.; Chan, L.-M.; Tyer, L.; Moody, R. T.; Himel, C. M.; Hercules, D. M. J. Am. Chem. Soc. 1975, 97, 3118
  19. Kim, Y. H.; Baek, N. S.; Kim, H. K. ChemPhysChem 2006, 7, 213 https://doi.org/10.1002/cphc.200500291
  20. Kim, Y. H.; Baek, N. S.; Kim, H. K. Bull. Korean Chem. Soc. 2006, 27, 1729 https://doi.org/10.5012/bkcs.2006.27.11.1729
  21. Roh, S.-G.; Kim, Y. H.; Baek, N. S.; Hong, K.-S.; Kim, H. K. Mol. Cryst. & Liq. Cryst. 2006, 446, 295 https://doi.org/10.1080/15421400500379962
  22. Mataga, N.; Kaifu, Y.; Koizumi, M. Bull. Chem. Soc. Jpn. 1956, 29, 465 https://doi.org/10.1246/bcsj.29.465
  23. Magennis, S. W.; Ferguson, A. J.; Bryden, T.; Jones, T. S.; Beeby, A.; Samual, I. D. W. Synthetic Metal 2003, 138, 463 https://doi.org/10.1016/S0379-6779(02)00501-5
  24. Weber, M. J. Phys. Rev. 1968, 171, 283 https://doi.org/10.1103/PhysRev.171.283
  25. Druzhinin, S. I.; Demeter, A.; Zachariasse, K. A. Chem. Phys. Lett. 2001, 347, 421 https://doi.org/10.1016/S0009-2614(01)01079-X
  26. Glasbeek, M.; Zhang, H. Chem. Rev. 2004, 104, 1929 https://doi.org/10.1021/cr0206723
  27. Singh, A. K.; Bhasikuttan, A. C.; Palit, D. K.; Mittal, J. P. J. Phys. Chem. A 2000, 103, 7002
  28. Mondal, J. A.; Ghosh, H. N.; Ghanty, T. K.; Mukherjee, T.; Palit, D. K. J. Phys. Chem. A 2006, 110, 3432 https://doi.org/10.1021/jp0555450

Cited by

  1. Sensitisation of the Near-Infrared Emission of NdIII from the Singlet State of Porphyrins Bearing Four 8-Hydroxyquinolinylamide Chelates vol.13, pp.13, 2012, https://doi.org/10.1002/cphc.201200328
  2. Synthesis, Antioxidant Activity and Fluorescence Properties of Novel Europium Complexes with (E)-2- or 4-hydroxy-N'-[(2-hydroxynaphthalen-1-yl)methylene]benzohydrazide Schiff Base vol.33, pp.10, 2012, https://doi.org/10.5012/bkcs.2012.33.10.3361
  3. )-cored complexes based on boron dipyrromethene (Bodipy) ligands for NIR emission vol.36, pp.3, 2012, https://doi.org/10.1039/C2NJ20786A
  4. Energy transfer from the singlet levels of diketones and dyes to lanthanide ions in nanoparticles consisting of their diketonate complexes vol.116, pp.6, 2014, https://doi.org/10.1134/S0030400X14060162
  5. Intrinsic quantum yields and radiative lifetimes of lanthanide tris(dipicolinates) vol.11, pp.9, 2009, https://doi.org/10.1039/b816131c
  6. 5-(Dimethylamino)-N-(4-ethynylphenyl)-1-naphthalenesulfonamide as a novel bifunctional antitumor agent and two-photon induced bio-imaging probe vol.46, pp.20, 2010, https://doi.org/10.1039/b926908h
  7. New Host Materials Containing Carbazole and Naphthyl Moieties for Green Dopant in Phosphorescence Organic Light-Emitting Diodes (OLEDs) vol.29, pp.11, 2007, https://doi.org/10.5012/bkcs.2008.29.11.2270
  8. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  9. Effect of Coordination Environment on the Photophysical Properties of Luminescent Europium(III) Complexes vol.30, pp.7, 2007, https://doi.org/10.5012/bkcs.2009.30.7.1553
  10. Lanthanide luminescence efficiency in eight- and nine-coordinate complexes: Role of the radiative lifetime vol.254, pp.21, 2007, https://doi.org/10.1016/j.ccr.2010.04.002
  11. On the design of highly luminescent lanthanide complexes vol.293, pp.None, 2007, https://doi.org/10.1016/j.ccr.2014.10.013