DOI QR코드

DOI QR Code

Synchrotron X-ray Reflectivity Studies on Nanoporous Low Dielectric Constant Organosilicate Thin Films

  • Oh, Weon-Tae (Department of NanoTechnology, Dong-eui University) ;
  • Park, Yeong-Do (Department of Advanced Materials Engineering, Dong-eui University) ;
  • Hwang, Yong-Taek (Department of Chemistry, National Research Laboratory for Polymer Synthesis & Physics, Center for Integrated Molecular Systems, and BK School of Molecular Science, POSTECH) ;
  • Ree, Moon-Hor (Department of Chemistry, National Research Laboratory for Polymer Synthesis & Physics, Center for Integrated Molecular Systems, and BK School of Molecular Science, POSTECH)
  • Published : 2007.12.20

Abstract

Spatially resolved, quantitative, non-destructive analysis using synchrotron x-ray reflectivity (XR) with subnano-scale resolution was successfully performed on the nanoporous organosilicate thin films for low dielectric applications. The structural information of porous thin films, which were prepared with polymethylsilsesquioxane and thermally labile 4-armed, star-shaped poly(ε-caprolactone) (PCL) composites, were characterized in terms of the laterally averaged electron density profile along with a film thickness as well as a total thickness. The thermal process used in this work caused to efficiently undergo sacrificial thermal degradation, generating closed nanopores in the film. The resultant nanoporous films became homogeneous, well-defined structure with a thin skin layer and low surface roughness. The average electron density of the calcined film reduced with increase of the initial porogen loading, and finally leaded to corresponding porosity ranged from 0 to 22.8% over the porogen loading range of 0-30 wt%. In addition to XR analysis, the surface and the inner structures of films are investigated and discussed with atomic force and scanning electron microscopy images.

Keywords

References

  1. Ree, M.; Yoon, J.; Heo, K. J. Mater. Chem. 2006, 16, 685 https://doi.org/10.1039/b511301f
  2. Lee, B.; Oh, W.; Yoon, J.; Hwang, Y.; Kim, J.; Landes, B. G.; Quintana, J. P.; Ree, M. Macromolecules 2006, 38, 8991 https://doi.org/10.1021/ma0501951
  3. Lee, B.; Oh, W.; Hwang, Y.; Park, Y.-H.; Yoon, J.; Jin, K. S.; Heo, K.; Kim, J.; Kim, K. W.; Ree, M. Adv. Mater. 2005, 17, 696 https://doi.org/10.1002/adma.200400919
  4. Lee, B.; Park, Y. H.; Hwang, Y. T.; Oh, W.; Yoon, J.; Ree, M. Nature Materials 2005, 4, 147 https://doi.org/10.1038/nmat1291
  5. Rottman, C.; Grader, G.; DeHazan, Y.; Melchior, S.; Avnir, D. J. Am. Chem. Soc. 1999, 121, 8533 https://doi.org/10.1021/ja991269p
  6. Dantas de Morais, T.; Chaput, F.; Bailot, J. P.; Lahlil, K.; Darracq, B.; Levy, Y. Adv. Mater. 1999, 11, 107 https://doi.org/10.1002/(SICI)1521-4095(199902)11:2<107::AID-ADMA107>3.0.CO;2-J
  7. Lev, O.; Tsionsky, M.; Rabinovich, L.; Glezer, V.; Sampath, S.; Pankratov, I.; Gun, J. Anal. Chem. 1995, 67, 22 https://doi.org/10.1021/ac00097a001
  8. Harmer, M. A.; Farneth, W. E.; Sun, Q. J. Am. Chem. Soc. 1996, 118, 7708 https://doi.org/10.1021/ja9541950
  9. Smaihi, M.; Jermoumi, T.; Marignan, J.; Noble, R. D. J. Membr. Sci. 1996, 116, 211 https://doi.org/10.1016/0376-7388(96)00042-7
  10. Huang, E.; Toney, M. F.; Volksen, W.; Mecerreyes, D.; Brock, P.; Kim, H. C.; Hawker, C. J.; Hedrick, J. L.; Lee, V. Y.; Magbitang, T.; Miller, R. D. Appl. Phys. Lett. 2002, 81, 2232 https://doi.org/10.1063/1.1507841
  11. Lee, H. J.; Lin, E. K.; Wang, H.; Wu, W. L.; Chen, W.; Moyer, E. C. Chem. Mater. 2002, 14, 1845 https://doi.org/10.1021/cm011569h
  12. Bolze, J.; Ree, M.; Yoon, H. S.; Chu, S. H.; Char, K. Langmuir 2001, 17, 6683 https://doi.org/10.1021/la010451c
  13. Oh, W.; Hwang, Y. T.; Park, Y. H.; Ree, M.; Chu, S. H.; Char, K.; Lee, J. K.; Kim, S. Y. Polymer 2003, 44, 2519 https://doi.org/10.1016/S0032-3861(03)00129-0
  14. Whang, C. M.; Lim, S. S. Bull. Korean Chem. Soc. 2000, 21, 1181
  15. Parratt, L. G. Phys. Rev. 1954, 95, 359 https://doi.org/10.1103/PhysRev.95.359
  16. Shin, Y. C.; Choi, K. Y.; Jin, M. Y.; Hong, S. K.; Cho, D.; Chang, T.; Ree, M. Korea Polym. J. 2001, 9, 100
  17. Lee, B.; Yoon, J.; Oh, W.; Hwang, Y.; Heo, K.; Jin, K. S.; Kim, J.; Kim, K. W.; Ree, M. Macromolecules 2005, 38, 3395 https://doi.org/10.1021/ma048214e
  18. Gibaud, A.; Vignaud, G.; Sinha, S. K. Acta Crystallogr. 1993, A49, 642
  19. Kiessig, H. Annln. Phys. 1931, 10, 769
  20. Yoon, J.; Heo, K.; Oh, W.; Jin, K. S.; Jin, S.; Kim, J.; Kim, K. W.; Chang, T.; Ree, M. Nanotechnology 2006, 17, 3490 https://doi.org/10.1088/0957-4484/17/14/022
  21. Oh, W.; Hwang, Y.; Shin, T. J.; Lee, B.; Kim, J.-S.; Yoon, J.; Brennan, S.; Mehta, A.; Ree, M. J. Appl. Cryst. 2007, 40, s626 https://doi.org/10.1107/S0021889806047509

Cited by

  1. Small-angle x-ray scattering station 4C2 BL of pohang accelerator laboratory for advance in Korean polymer science vol.16, pp.7, 2008, https://doi.org/10.1007/BF03218563
  2. X-Ray Scattering Studies on Molecular Structures of Star and Dendritic Polymers vol.16, pp.8, 2007, https://doi.org/10.1007/bf03218582
  3. Refractive Indexes of Porous Thin Films Prepared From Organic-templated Polymethylsilsesquioxanes vol.15, pp.6, 2007, https://doi.org/10.4313/teem.2014.15.6.305