References
- Linsebigler, A.; Lu, G.; Yates, J. T. Chem. Rev. 1995, 95, 735- 758 https://doi.org/10.1021/cr00035a013
- Jakob, M.; Levanon, H.; Kamat, P. V. Nano Lett. 2003, 3, 353-358 https://doi.org/10.1021/nl0340071
- Naoi, K.; Ohko, Y.; Tatsuma, T. J. Am. Chem. Soc. 2004, 126, 3664-3668 https://doi.org/10.1021/ja039474z
- Cozzoli, P. D.; Comparelli, R.; Fanizza, E.; Curri, M. L.; Agostiano, A.; Laub, D. J. Am. Chem. Soc. 2004, 126, 3868-3879 https://doi.org/10.1021/ja0395846
- Rolison, D. R. Science 2003, 299, 1698-1701 https://doi.org/10.1126/science.1082332
- Sun, B.; Vorontsov, A. V.; Smirniotis, P. G. Langmuir 2003, 19, 3151-3156 https://doi.org/10.1021/la0264670
- Soejima, T.; Tada, H.; Kawahara, T.; Ito, S. Langmuir 2002, 18, 4191-4194 https://doi.org/10.1021/la020099i
- Willner, I.; Patolsky, F.; Wasserman, J. Angew. Chem. Int. Ed. 2001, 40, 1861-1864 https://doi.org/10.1002/1521-3773(20010518)40:10<1861::AID-ANIE1861>3.0.CO;2-V
- Cao, Y.; Banin, U. Angew. Chem. Int. Ed. 1999, 38, 3692-3694 https://doi.org/10.1002/(SICI)1521-3773(19991216)38:24<3692::AID-ANIE3692>3.0.CO;2-W
- Wang, Z.; Chumanov, G. Adv. Mater. 2003, 15, 1285-1289 https://doi.org/10.1002/adma.200304989
- Yu, S.; Yoshimura, M. Adv. Funct. Mater. 2002, 12, 9-15 https://doi.org/10.1002/1616-3028(20020101)12:1<9::AID-ADFM9>3.0.CO;2-A
- Schneider, J. J. Adv. Mater. 2001, 13, 529-533 https://doi.org/10.1002/1521-4095(200104)13:7<529::AID-ADMA529>3.0.CO;2-X
- Moser, W. R. Advanced Catalysis and Nanostructured Materials; Academic Press: San Diego, CA, 1990
- Schiavello, M. Photocatalysis and Environment, Trends and Applications; Kluwer Press: The Netherlands, 1988
- Pelizzetti, E.; Serpone, N. Photocatalysis: Fundamentals and Applications; Wiley: New York, 1989
- Oregan, B.; Gratzel, M. Nature 1991, 353, 737-740 https://doi.org/10.1038/353737a0
- Diebold, U. Surf. Sci. Rep. 2003, 48, 53-229 https://doi.org/10.1016/S0167-5729(02)00100-0
- Matthews, R. W. J. Catal. 1988, 111, 264-272 https://doi.org/10.1016/0021-9517(88)90085-1
- Arnold, G. W. J. Appl. Phys. 1975, 46, 4466-4473 https://doi.org/10.1063/1.321422
- Tanahashi, I.; Manabe, Y.; Tohda, T.; Sasaki, S.; Nakamura, A. J. Appl. Phys. 1996, 79, 1244-1249 https://doi.org/10.1063/1.361018
- He, J.; Ichinose, I.; Fujikawa, S.; Kunitake, T.; Nakao, A. Chem. Mater. 2002, 14, 3493-3500 https://doi.org/10.1021/cm010880w
- He, J.; Ichinose, I.; Kunitake, T.; Nakao, A. Langmuir 2002, 18, 10005-10010 https://doi.org/10.1021/la0260584
- Pastoriza-Santos, I.; Koktysh, D. S.; Mamedov, A. A.; Giersig, M.; Kotov, N. A.; Liz Marzan, L. M. Langmuir 2000, 16, 2731-2735 https://doi.org/10.1021/la991212g
- Tom, R. T.; Nair, A. S.; Singh, N.; Aslam, M.; Nagendra, C. L.; Philip, R.; Vijayamohanan, K.; Pradeep, T. Langmuir 2003, 19, 3439-3445 https://doi.org/10.1021/la0266435
- Kielbassa, S.; Kinne, M.; Behm, R. J. Langmuir 2004, 20, 6644- 6650 https://doi.org/10.1021/la0302201
- Schenhar, R.; Norsten, T. B.; Rotello, V. M. Adv. Mater. 2005, 17, 657-669 https://doi.org/10.1002/adma.200401291
- Bockstaller, M. R.; Kolb, R.; Thomas, E. L. Adv. Mater. 2001, 13, 1783-1786 https://doi.org/10.1002/1521-4095(200112)13:23<1783::AID-ADMA1783>3.0.CO;2-X
- Bullen, H. A.; Garrett, S. J. Nano Lett. 2002, 2, 739-745 https://doi.org/10.1021/nl025568f
- Moritz, T.; Reiss, J.; Diesner, K.; Su, D.; Chemseddine, A. J. Phys. Chem. B 1997, 101, 8052-8053 https://doi.org/10.1021/jp9705131
- Burnside, S. D.; Shklover, V.; Barbe, C.; Comte, P.; Arendse, F.; Brooks, K.; Grätzel, M. Chem. Mater. 1998, 10, 2419-2425 https://doi.org/10.1021/cm980702b
- Hamley, I. W. The Physics of Block Copolymers; Oxford University Press: New York, 1998
- Fredrickson, G. H.; Bates, F. S. Annu. Rev. Mater. Sci. 1996, 26, 501-550 https://doi.org/10.1146/annurev.ms.26.080196.002441
- Fasolka, M. J.; Mayes, A. M. Annu. Rev. Mater. Res. 2001, 31, 323-355 https://doi.org/10.1146/annurev.matsci.31.1.323
- Hashimoto, T.; Shibayma, M.; Fujimura, M.; Kawai, H. Block Copolymers, Science and Technology; Meier, D. J., Ed.; Harwood Academic: London, 1983; pp 63-108
- Lazzari, M.; López-Quintela, M. A. Adv. Mater. 2003, 15, 1583- 1594 https://doi.org/10.1002/adma.200300382
- Hamley, I. W. Angew. Chem. Int. Ed. 2003, 42, 1692-1712 https://doi.org/10.1002/anie.200200546
- Hamley, I. W. Nanotechnology 2003, 14, R39-R54 https://doi.org/10.1088/0957-4484/14/10/201
- Soler-Illia, G. J. de A. A.; Crepaldi, E. L.; Grosso, D.; Sanchez, C. Curr. Opin. Coll. Inter. Sci. 2003, 8, 109-126 https://doi.org/10.1016/S1359-0294(03)00002-5
- Forster, S.; Plantenberg, T. Angew. Chem. Int. Ed. 2002, 41, 688-714 https://doi.org/10.1002/1521-3773(20020301)41:5<688::AID-ANIE688>3.0.CO;2-3
- Forster, S.; Konrad, M. J. Mater. Chem. 2003, 13, 2671-2688 https://doi.org/10.1039/b307512p
- Forster, S.; Antonietti, M. Adv. Mater. 1998, 10, 195-217 https://doi.org/10.1002/(SICI)1521-4095(199802)10:3<195::AID-ADMA195>3.0.CO;2-V
- Kleitz, F.; Kim, T.-W.; Ryoo, R. Bull. Kor. Chem. Soc. 2005, 26, 1653-1668 https://doi.org/10.5012/bkcs.2005.26.11.1653
- Bae, J. Y.; Choi, S.-H.; Bae, B. S., Bull. Kor. Chem. Soc. 2006, 27, 1562-1566 https://doi.org/10.5012/bkcs.2006.27.10.1562
- Park, C.; Yoon, J.; Thomas, E. L. Polymer 2003, 44, 6725-6760 https://doi.org/10.1016/j.polymer.2003.08.011
- Segalman, R. E. Mater. Sci. Eng. R 2005, 48, 191-226 https://doi.org/10.1016/j.mser.2004.12.003
- Thurn-Albrecht, T.; Schotter, J.; Kästle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Science 2000, 290, 2126-2129 https://doi.org/10.1126/science.290.5499.2126
- Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Science 1997, 276, 1401-1404 https://doi.org/10.1126/science.276.5317.1401
- Urbas, A. M.; Maldovan, M.; DeRege, P.; Thomas, E. L. Adv. Mater. 2002, 14, 1850-1853 https://doi.org/10.1002/adma.200290018
- Kim, D. H.; Lau, K. H. A.; Robertson, J. W. F.; Lee, O. J.; Jeong, U.; Lee, J. I.; Hawker, C. J.; Russell, T. P.; Kim, J. K.; Knoll, W. Adv. Mater. 2005, 17, 2442-2446 https://doi.org/10.1002/adma.200500170
- Kastle, G.; Boyen, H.-G.; Weigl, F.; Lengl, G.; Herzog, T.; Ziemann, P.; Riethmüller, S.; Mayer, O.; Hartmann, C.; Spatz, J. P.; Möller, M.; Ozawa, M.; Banhart, F.; Garnier, M. G.; Oelhafen, P. Adv. Funct. Mat. 2003, 13, 853-861 https://doi.org/10.1002/adfm.200304332
- Spatz, J. P.; Mösser, S.; Hartmann, C.; Moller, M.; Herzog, T.; Krieger, M.; Boyen, H.-G.; Ziemann, P. Langmuir 2000, 16, 407-415 https://doi.org/10.1021/la990070n
- Spatz, J. P.; Roescher, A.; Moller, M. Adv. Mater. 1996, 8, 337-340 https://doi.org/10.1002/adma.19960080411
- Li, X.; Lau, K. H. A.; Kim, D. H.; Knoll, W. Langmuir 2005, 21, 5212-5217 https://doi.org/10.1021/la046812g
- Li, X.; Göring, P.; Pippel, E.; Steinhart, M.; Kim, D. H.; Knoll, W. Macromol. Rapid. Commun. 2005, 26, 1173-1178 https://doi.org/10.1002/marc.200500193
- Kim, D. H.; Jia, X.; Lin, Z.; Guarini, K. W.; Russell, T. P. Adv. Mater. 2004, 16, 702-706 https://doi.org/10.1002/adma.200404906
- Kim, D. H.; Kim, S. H.; Lavery, K.; Russell, T. P. Nano Letters 2004, 4, 1841-1844 https://doi.org/10.1021/nl049063w
- Kim, D. H.; Sun, Z. C.; Russell, T. P.; Knoll, W.; Gutmann, J. S. Adv. Funct. Mater. 2005, 15, 1-6
- Sun, Z.; Kim, D. H.; Wolkenhauer, M.; Bumbu, G. G.; Knoll, W.; Gutmann, J. S. ChemPhysChem 2006, 7, 370-378 https://doi.org/10.1002/cphc.200500340
- Yang, P. D.; Deng, T.; Zhao, D. Y.; Feng, P. Y.; Pine, D.; Chmelka, B. F.; Whitesides, G. M.; Stucky, G. D. Science 1998, 282, 2244-2246 https://doi.org/10.1126/science.282.5397.2244
- Yang, P. D.; Zhao, D. Y.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D. Nature 1998, 396, 152-155 https://doi.org/10.1038/24132
- Brinker, C. J.; Lu, Y.; Sellinger, A.; Fan, H. Adv. Mater. 1999, 11, 579-585 https://doi.org/10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R
- Soler-Illia, G. J. de A. A.; Sanchez, C.; Lebeau, B.; Patarin, J. Chem. Rev. 2002, 102, 4093-4138 https://doi.org/10.1021/cr0200062
- Goltner, C. G.; Henke, S.; Weissenberger, M. C.; Antonietti, M. Angew. Chem. Int. Ed. 1998, 37, 613-616 https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<613::AID-ANIE613>3.0.CO;2-G
- Haseloh, S.; Choi, S. Y.; Mamak, M.; Coombs, N.; Petrov, S.; Chopra, N.; Ozin, G. A. Chem. Commun. 2004, 13, 1460-1461
- Vagberg, L. J. M.; Cogan, K. A.; Gasto, A. P. Macromolecules 1991, 24, 1670-1677 https://doi.org/10.1021/ma00007a033
- McKay, J. M.; Henrich, V. E. Surf. Sci. 1984, 137, 463-472 https://doi.org/10.1016/0039-6028(84)90523-5
- Zimmermann, R.; Steiner, P.; Claessen, R.; Reinert, F.; Hufner, S. J. Electron Spec. Relat. Phenom. 1998, 96, 179-186 https://doi.org/10.1016/S0368-2048(98)00234-5
- Brust, M.; Walker, M. J. Chem. Soc., Chem. Commun. 1994, 801-802
- Boyen, H. G.; Kästle, G. Science 2002, 297, 1533-1536 https://doi.org/10.1126/science.1076248
- Juodkazis, K.; Juodkazyte, J.; Jasulaitiene, V.; Lukinskas, A.; Sebeka, B. Electrochem. Commun. 2000, 2, 503-507 https://doi.org/10.1016/S1388-2481(00)00069-2
- Ouyang, M.; Yuan, C.; Muisener, R. J.; Boulares, A.; Koberstein, J. T. Chem. Mater. 2000, 12, 1591-1596 https://doi.org/10.1021/cm990770d
- Zhang, W. F.; Zhang, M. S.; Yin, Z.; Chen, Q. Appl. Phys. B 2000, 70, 261-265 https://doi.org/10.1007/s003400050043
- Tang, H.; Berger, H.; Schmid, P. E.; Lévy, F.; Burri, G. Solid State Commun. 1993, 87, 847-850 https://doi.org/10.1016/0038-1098(93)90427-O
- Lei, Y.; Zhang, L. D.; Meng, G. W.; Li, G. H.; Zhang, X. Y.; Liang, C. H.; Chen, W.; Wang, S. X. Appl. Phys. Lett. 2001, 78, 1125-1127 https://doi.org/10.1063/1.1350959
- Wilcoxon, J. P.; Martin, J. E.; Parsapour, F.; Wiedenman, B.; Kelley, D. F. J. Chem. Phys. 1998, 108, 9137-9143 https://doi.org/10.1063/1.476360
- Tian, Y.; Tatsuma, T. J. Am. Chem. Soc. 2005, 127, 7632-7637 https://doi.org/10.1021/ja042192u
- Guo, Y.-G.; Hu, J.-S.; Liang, H.-P.; Wan, L.-J.; Bai, C.-L. Adv. Funct. Mater. 2005, 15, 196-202 https://doi.org/10.1002/adfm.200305098
Cited by
- Preparation and photocatalytic activity of eccentric Au–titania core–shell nanoparticles by block copolymer templates vol.13, pp.7, 2011, https://doi.org/10.1039/C0CP01353F
- Physical Properties of Mercaptopyruvic-acid Layer Formed on Gold Surfaces vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2611
- Surface Properties of Glutathione Layer Formed on Gold Surfaces vol.50, pp.2, 2012, https://doi.org/10.9713/kcer.2012.50.2.379
- vol.20, pp.2, 2014, https://doi.org/10.7464/ksct.2014.20.2.130
- Surfaces vol.25, pp.6, 2014, https://doi.org/10.14478/ace.2014.1100
- vol.52, pp.4, 2014, https://doi.org/10.9713/kcer.2014.52.4.538
- Plasmonic Effect Enhanced Photocurrent in Nanostructured TiO2 Films Decorated with Gold Nanoparticles vol.46, pp.7, 2017, https://doi.org/10.1007/s11664-017-5436-6
- Single/Dual Alkaline Earth Metal-Doped Hollow Nanoparticles as Nanocarrier for Accelerating Neurite Development by Activating pERK and pJNK pp.09340866, 2018, https://doi.org/10.1002/ppsc.201800132
- From Nanodot to Nanowire: Hybrid Au/Titania Nanoarrays by Block Copolymer Templates vol.30, pp.21, 2009, https://doi.org/10.1002/marc.200900209
- Efficient photocatalytic hybrid Ag/TiO2 nanodot arrays integrated into nanopatterned block copolymer thin films vol.33, pp.12, 2009, https://doi.org/10.1039/b9nj00245f
- Synthesis and Magnetic Properties of Dendron Capped Fe2O3 Nanoparticles vol.29, pp.8, 2007, https://doi.org/10.5012/bkcs.2008.29.8.1545
- Electrostatic Properties of N-Acetyl-Cysteine-Coated Gold Surfaces Interacting with TiO2 Surfaces vol.30, pp.4, 2009, https://doi.org/10.5012/bkcs.2009.30.4.902
- Electrostatic properties of mercaptoundecanoic-acid-coated-gold surfaces interacting with TiO2 surfaces vol.10, pp.2, 2007, https://doi.org/10.1016/j.cap.2009.07.009
- Effect of 11-Mercaptoundecylphosphoric-acid Layer Formation on Gold Surfaces Interacting with Titanium Dioxide Surfaces vol.31, pp.10, 2010, https://doi.org/10.5012/bkcs.2010.31.10.2861
- TiO2-Au nanocomposite materials modified photoanode with dual sensitizer for solid-state dye-sensitized solar cell vol.5, pp.4, 2013, https://doi.org/10.1063/1.4812641
- 지르코니아와 금 표면 위의 메르캡토언데실인산층의 정전기적 상호작용 vol.56, pp.5, 2018, https://doi.org/10.9713/kcer.2018.56.5.625
- Comparison of UV Irradiation and Sintering on Mesoporous Spongelike ZnO Films Prepared from PS-b-P4VP Templated Sol-Gel Synthesis vol.1, pp.12, 2007, https://doi.org/10.1021/acsanm.8b02039