DOI QR코드

DOI QR Code

Au/Titania Composite Nanoparticle Arrays with Controlled Size and Spacing by Organic-Inorganic Nanohybridization in Thin Film Block Copolymer Templates

  • Li, Xue (Max Planck Institute for Polymer Research) ;
  • Fu, Jun (Max Planck Institute for Polymer Research) ;
  • Steinhart, Martin (Max Planck Institute of Microstructure Physics) ;
  • Kim, Dong-Ha (Max Planck Institute for Polymer Research) ;
  • Knoll, Wolfgang (Max Planck Institute for Polymer Research)
  • Published : 2007.06.20

Abstract

A simple approach to prepare arrays of Au/TiO2 composite nanoparticles by using Au-loaded block copolymers as templates combined with a sol-gel process is described. The organic-inorganic hybrid films with closely packed inorganic nanodomains in organic matrix are produced by spin coating the mixtures of polystyrene-block-poly(ethylene oxide) (PS-b-PEO)/HAuCl4 solution and sol-gel precursor solution. After removal of the organic matrix with deep UV irradiation, arrays of Au/TiO2 composite nanoparticles with different compositions or particle sizes can be easily produced. Different photoluminescence (PL) emission spectra from an organic-inorganic hybrid film and arrays of Au/TiO2 composite nanoparticles indicate that TiO2 and Au components exist as separate state in the initial hybrid film and form composite nanoparticles after the removal of the block copolymer matrix.

Keywords

References

  1. Linsebigler, A.; Lu, G.; Yates, J. T. Chem. Rev. 1995, 95, 735- 758 https://doi.org/10.1021/cr00035a013
  2. Jakob, M.; Levanon, H.; Kamat, P. V. Nano Lett. 2003, 3, 353-358 https://doi.org/10.1021/nl0340071
  3. Naoi, K.; Ohko, Y.; Tatsuma, T. J. Am. Chem. Soc. 2004, 126, 3664-3668 https://doi.org/10.1021/ja039474z
  4. Cozzoli, P. D.; Comparelli, R.; Fanizza, E.; Curri, M. L.; Agostiano, A.; Laub, D. J. Am. Chem. Soc. 2004, 126, 3868-3879 https://doi.org/10.1021/ja0395846
  5. Rolison, D. R. Science 2003, 299, 1698-1701 https://doi.org/10.1126/science.1082332
  6. Sun, B.; Vorontsov, A. V.; Smirniotis, P. G. Langmuir 2003, 19, 3151-3156 https://doi.org/10.1021/la0264670
  7. Soejima, T.; Tada, H.; Kawahara, T.; Ito, S. Langmuir 2002, 18, 4191-4194 https://doi.org/10.1021/la020099i
  8. Willner, I.; Patolsky, F.; Wasserman, J. Angew. Chem. Int. Ed. 2001, 40, 1861-1864 https://doi.org/10.1002/1521-3773(20010518)40:10<1861::AID-ANIE1861>3.0.CO;2-V
  9. Cao, Y.; Banin, U. Angew. Chem. Int. Ed. 1999, 38, 3692-3694 https://doi.org/10.1002/(SICI)1521-3773(19991216)38:24<3692::AID-ANIE3692>3.0.CO;2-W
  10. Wang, Z.; Chumanov, G. Adv. Mater. 2003, 15, 1285-1289 https://doi.org/10.1002/adma.200304989
  11. Yu, S.; Yoshimura, M. Adv. Funct. Mater. 2002, 12, 9-15 https://doi.org/10.1002/1616-3028(20020101)12:1<9::AID-ADFM9>3.0.CO;2-A
  12. Schneider, J. J. Adv. Mater. 2001, 13, 529-533 https://doi.org/10.1002/1521-4095(200104)13:7<529::AID-ADMA529>3.0.CO;2-X
  13. Moser, W. R. Advanced Catalysis and Nanostructured Materials; Academic Press: San Diego, CA, 1990
  14. Schiavello, M. Photocatalysis and Environment, Trends and Applications; Kluwer Press: The Netherlands, 1988
  15. Pelizzetti, E.; Serpone, N. Photocatalysis: Fundamentals and Applications; Wiley: New York, 1989
  16. Oregan, B.; Gratzel, M. Nature 1991, 353, 737-740 https://doi.org/10.1038/353737a0
  17. Diebold, U. Surf. Sci. Rep. 2003, 48, 53-229 https://doi.org/10.1016/S0167-5729(02)00100-0
  18. Matthews, R. W. J. Catal. 1988, 111, 264-272 https://doi.org/10.1016/0021-9517(88)90085-1
  19. Arnold, G. W. J. Appl. Phys. 1975, 46, 4466-4473 https://doi.org/10.1063/1.321422
  20. Tanahashi, I.; Manabe, Y.; Tohda, T.; Sasaki, S.; Nakamura, A. J. Appl. Phys. 1996, 79, 1244-1249 https://doi.org/10.1063/1.361018
  21. He, J.; Ichinose, I.; Fujikawa, S.; Kunitake, T.; Nakao, A. Chem. Mater. 2002, 14, 3493-3500 https://doi.org/10.1021/cm010880w
  22. He, J.; Ichinose, I.; Kunitake, T.; Nakao, A. Langmuir 2002, 18, 10005-10010 https://doi.org/10.1021/la0260584
  23. Pastoriza-Santos, I.; Koktysh, D. S.; Mamedov, A. A.; Giersig, M.; Kotov, N. A.; Liz Marzan, L. M. Langmuir 2000, 16, 2731-2735 https://doi.org/10.1021/la991212g
  24. Tom, R. T.; Nair, A. S.; Singh, N.; Aslam, M.; Nagendra, C. L.; Philip, R.; Vijayamohanan, K.; Pradeep, T. Langmuir 2003, 19, 3439-3445 https://doi.org/10.1021/la0266435
  25. Kielbassa, S.; Kinne, M.; Behm, R. J. Langmuir 2004, 20, 6644- 6650 https://doi.org/10.1021/la0302201
  26. Schenhar, R.; Norsten, T. B.; Rotello, V. M. Adv. Mater. 2005, 17, 657-669 https://doi.org/10.1002/adma.200401291
  27. Bockstaller, M. R.; Kolb, R.; Thomas, E. L. Adv. Mater. 2001, 13, 1783-1786 https://doi.org/10.1002/1521-4095(200112)13:23<1783::AID-ADMA1783>3.0.CO;2-X
  28. Bullen, H. A.; Garrett, S. J. Nano Lett. 2002, 2, 739-745 https://doi.org/10.1021/nl025568f
  29. Moritz, T.; Reiss, J.; Diesner, K.; Su, D.; Chemseddine, A. J. Phys. Chem. B 1997, 101, 8052-8053 https://doi.org/10.1021/jp9705131
  30. Burnside, S. D.; Shklover, V.; Barbe, C.; Comte, P.; Arendse, F.; Brooks, K.; Grätzel, M. Chem. Mater. 1998, 10, 2419-2425 https://doi.org/10.1021/cm980702b
  31. Hamley, I. W. The Physics of Block Copolymers; Oxford University Press: New York, 1998
  32. Fredrickson, G. H.; Bates, F. S. Annu. Rev. Mater. Sci. 1996, 26, 501-550 https://doi.org/10.1146/annurev.ms.26.080196.002441
  33. Fasolka, M. J.; Mayes, A. M. Annu. Rev. Mater. Res. 2001, 31, 323-355 https://doi.org/10.1146/annurev.matsci.31.1.323
  34. Hashimoto, T.; Shibayma, M.; Fujimura, M.; Kawai, H. Block Copolymers, Science and Technology; Meier, D. J., Ed.; Harwood Academic: London, 1983; pp 63-108
  35. Lazzari, M.; López-Quintela, M. A. Adv. Mater. 2003, 15, 1583- 1594 https://doi.org/10.1002/adma.200300382
  36. Hamley, I. W. Angew. Chem. Int. Ed. 2003, 42, 1692-1712 https://doi.org/10.1002/anie.200200546
  37. Hamley, I. W. Nanotechnology 2003, 14, R39-R54 https://doi.org/10.1088/0957-4484/14/10/201
  38. Soler-Illia, G. J. de A. A.; Crepaldi, E. L.; Grosso, D.; Sanchez, C. Curr. Opin. Coll. Inter. Sci. 2003, 8, 109-126 https://doi.org/10.1016/S1359-0294(03)00002-5
  39. Forster, S.; Plantenberg, T. Angew. Chem. Int. Ed. 2002, 41, 688-714 https://doi.org/10.1002/1521-3773(20020301)41:5<688::AID-ANIE688>3.0.CO;2-3
  40. Forster, S.; Konrad, M. J. Mater. Chem. 2003, 13, 2671-2688 https://doi.org/10.1039/b307512p
  41. Forster, S.; Antonietti, M. Adv. Mater. 1998, 10, 195-217 https://doi.org/10.1002/(SICI)1521-4095(199802)10:3<195::AID-ADMA195>3.0.CO;2-V
  42. Kleitz, F.; Kim, T.-W.; Ryoo, R. Bull. Kor. Chem. Soc. 2005, 26, 1653-1668 https://doi.org/10.5012/bkcs.2005.26.11.1653
  43. Bae, J. Y.; Choi, S.-H.; Bae, B. S., Bull. Kor. Chem. Soc. 2006, 27, 1562-1566 https://doi.org/10.5012/bkcs.2006.27.10.1562
  44. Park, C.; Yoon, J.; Thomas, E. L. Polymer 2003, 44, 6725-6760 https://doi.org/10.1016/j.polymer.2003.08.011
  45. Segalman, R. E. Mater. Sci. Eng. R 2005, 48, 191-226 https://doi.org/10.1016/j.mser.2004.12.003
  46. Thurn-Albrecht, T.; Schotter, J.; Kästle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Science 2000, 290, 2126-2129 https://doi.org/10.1126/science.290.5499.2126
  47. Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Science 1997, 276, 1401-1404 https://doi.org/10.1126/science.276.5317.1401
  48. Urbas, A. M.; Maldovan, M.; DeRege, P.; Thomas, E. L. Adv. Mater. 2002, 14, 1850-1853 https://doi.org/10.1002/adma.200290018
  49. Kim, D. H.; Lau, K. H. A.; Robertson, J. W. F.; Lee, O. J.; Jeong, U.; Lee, J. I.; Hawker, C. J.; Russell, T. P.; Kim, J. K.; Knoll, W. Adv. Mater. 2005, 17, 2442-2446 https://doi.org/10.1002/adma.200500170
  50. Kastle, G.; Boyen, H.-G.; Weigl, F.; Lengl, G.; Herzog, T.; Ziemann, P.; Riethmüller, S.; Mayer, O.; Hartmann, C.; Spatz, J. P.; Möller, M.; Ozawa, M.; Banhart, F.; Garnier, M. G.; Oelhafen, P. Adv. Funct. Mat. 2003, 13, 853-861 https://doi.org/10.1002/adfm.200304332
  51. Spatz, J. P.; Mösser, S.; Hartmann, C.; Moller, M.; Herzog, T.; Krieger, M.; Boyen, H.-G.; Ziemann, P. Langmuir 2000, 16, 407-415 https://doi.org/10.1021/la990070n
  52. Spatz, J. P.; Roescher, A.; Moller, M. Adv. Mater. 1996, 8, 337-340 https://doi.org/10.1002/adma.19960080411
  53. Li, X.; Lau, K. H. A.; Kim, D. H.; Knoll, W. Langmuir 2005, 21, 5212-5217 https://doi.org/10.1021/la046812g
  54. Li, X.; Göring, P.; Pippel, E.; Steinhart, M.; Kim, D. H.; Knoll, W. Macromol. Rapid. Commun. 2005, 26, 1173-1178 https://doi.org/10.1002/marc.200500193
  55. Kim, D. H.; Jia, X.; Lin, Z.; Guarini, K. W.; Russell, T. P. Adv. Mater. 2004, 16, 702-706 https://doi.org/10.1002/adma.200404906
  56. Kim, D. H.; Kim, S. H.; Lavery, K.; Russell, T. P. Nano Letters 2004, 4, 1841-1844 https://doi.org/10.1021/nl049063w
  57. Kim, D. H.; Sun, Z. C.; Russell, T. P.; Knoll, W.; Gutmann, J. S. Adv. Funct. Mater. 2005, 15, 1-6
  58. Sun, Z.; Kim, D. H.; Wolkenhauer, M.; Bumbu, G. G.; Knoll, W.; Gutmann, J. S. ChemPhysChem 2006, 7, 370-378 https://doi.org/10.1002/cphc.200500340
  59. Yang, P. D.; Deng, T.; Zhao, D. Y.; Feng, P. Y.; Pine, D.; Chmelka, B. F.; Whitesides, G. M.; Stucky, G. D. Science 1998, 282, 2244-2246 https://doi.org/10.1126/science.282.5397.2244
  60. Yang, P. D.; Zhao, D. Y.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D. Nature 1998, 396, 152-155 https://doi.org/10.1038/24132
  61. Brinker, C. J.; Lu, Y.; Sellinger, A.; Fan, H. Adv. Mater. 1999, 11, 579-585 https://doi.org/10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R
  62. Soler-Illia, G. J. de A. A.; Sanchez, C.; Lebeau, B.; Patarin, J. Chem. Rev. 2002, 102, 4093-4138 https://doi.org/10.1021/cr0200062
  63. Goltner, C. G.; Henke, S.; Weissenberger, M. C.; Antonietti, M. Angew. Chem. Int. Ed. 1998, 37, 613-616 https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<613::AID-ANIE613>3.0.CO;2-G
  64. Haseloh, S.; Choi, S. Y.; Mamak, M.; Coombs, N.; Petrov, S.; Chopra, N.; Ozin, G. A. Chem. Commun. 2004, 13, 1460-1461
  65. Vagberg, L. J. M.; Cogan, K. A.; Gasto, A. P. Macromolecules 1991, 24, 1670-1677 https://doi.org/10.1021/ma00007a033
  66. McKay, J. M.; Henrich, V. E. Surf. Sci. 1984, 137, 463-472 https://doi.org/10.1016/0039-6028(84)90523-5
  67. Zimmermann, R.; Steiner, P.; Claessen, R.; Reinert, F.; Hufner, S. J. Electron Spec. Relat. Phenom. 1998, 96, 179-186 https://doi.org/10.1016/S0368-2048(98)00234-5
  68. Brust, M.; Walker, M. J. Chem. Soc., Chem. Commun. 1994, 801-802
  69. Boyen, H. G.; Kästle, G. Science 2002, 297, 1533-1536 https://doi.org/10.1126/science.1076248
  70. Juodkazis, K.; Juodkazyte, J.; Jasulaitiene, V.; Lukinskas, A.; Sebeka, B. Electrochem. Commun. 2000, 2, 503-507 https://doi.org/10.1016/S1388-2481(00)00069-2
  71. Ouyang, M.; Yuan, C.; Muisener, R. J.; Boulares, A.; Koberstein, J. T. Chem. Mater. 2000, 12, 1591-1596 https://doi.org/10.1021/cm990770d
  72. Zhang, W. F.; Zhang, M. S.; Yin, Z.; Chen, Q. Appl. Phys. B 2000, 70, 261-265 https://doi.org/10.1007/s003400050043
  73. Tang, H.; Berger, H.; Schmid, P. E.; Lévy, F.; Burri, G. Solid State Commun. 1993, 87, 847-850 https://doi.org/10.1016/0038-1098(93)90427-O
  74. Lei, Y.; Zhang, L. D.; Meng, G. W.; Li, G. H.; Zhang, X. Y.; Liang, C. H.; Chen, W.; Wang, S. X. Appl. Phys. Lett. 2001, 78, 1125-1127 https://doi.org/10.1063/1.1350959
  75. Wilcoxon, J. P.; Martin, J. E.; Parsapour, F.; Wiedenman, B.; Kelley, D. F. J. Chem. Phys. 1998, 108, 9137-9143 https://doi.org/10.1063/1.476360
  76. Tian, Y.; Tatsuma, T. J. Am. Chem. Soc. 2005, 127, 7632-7637 https://doi.org/10.1021/ja042192u
  77. Guo, Y.-G.; Hu, J.-S.; Liang, H.-P.; Wan, L.-J.; Bai, C.-L. Adv. Funct. Mater. 2005, 15, 196-202 https://doi.org/10.1002/adfm.200305098

Cited by

  1. Preparation and photocatalytic activity of eccentric Au–titania core–shell nanoparticles by block copolymer templates vol.13, pp.7, 2011, https://doi.org/10.1039/C0CP01353F
  2. Physical Properties of Mercaptopyruvic-acid Layer Formed on Gold Surfaces vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2611
  3. Surface Properties of Glutathione Layer Formed on Gold Surfaces vol.50, pp.2, 2012, https://doi.org/10.9713/kcer.2012.50.2.379
  4. vol.20, pp.2, 2014, https://doi.org/10.7464/ksct.2014.20.2.130
  5. Surfaces vol.25, pp.6, 2014, https://doi.org/10.14478/ace.2014.1100
  6. vol.52, pp.4, 2014, https://doi.org/10.9713/kcer.2014.52.4.538
  7. Plasmonic Effect Enhanced Photocurrent in Nanostructured TiO2 Films Decorated with Gold Nanoparticles vol.46, pp.7, 2017, https://doi.org/10.1007/s11664-017-5436-6
  8. Single/Dual Alkaline Earth Metal-Doped Hollow Nanoparticles as Nanocarrier for Accelerating Neurite Development by Activating pERK and pJNK pp.09340866, 2018, https://doi.org/10.1002/ppsc.201800132
  9. From Nanodot to Nanowire: Hybrid Au/Titania Nanoarrays by Block Copolymer Templates vol.30, pp.21, 2009, https://doi.org/10.1002/marc.200900209
  10. Efficient photocatalytic hybrid Ag/TiO2 nanodot arrays integrated into nanopatterned block copolymer thin films vol.33, pp.12, 2009, https://doi.org/10.1039/b9nj00245f
  11. Synthesis and Magnetic Properties of Dendron Capped Fe2O3 Nanoparticles vol.29, pp.8, 2007, https://doi.org/10.5012/bkcs.2008.29.8.1545
  12. Electrostatic Properties of N-Acetyl-Cysteine-Coated Gold Surfaces Interacting with TiO2 Surfaces vol.30, pp.4, 2009, https://doi.org/10.5012/bkcs.2009.30.4.902
  13. Electrostatic properties of mercaptoundecanoic-acid-coated-gold surfaces interacting with TiO2 surfaces vol.10, pp.2, 2007, https://doi.org/10.1016/j.cap.2009.07.009
  14. Effect of 11-Mercaptoundecylphosphoric-acid Layer Formation on Gold Surfaces Interacting with Titanium Dioxide Surfaces vol.31, pp.10, 2010, https://doi.org/10.5012/bkcs.2010.31.10.2861
  15. TiO2-Au nanocomposite materials modified photoanode with dual sensitizer for solid-state dye-sensitized solar cell vol.5, pp.4, 2013, https://doi.org/10.1063/1.4812641
  16. 지르코니아와 금 표면 위의 메르캡토언데실인산층의 정전기적 상호작용 vol.56, pp.5, 2018, https://doi.org/10.9713/kcer.2018.56.5.625
  17. Comparison of UV Irradiation and Sintering on Mesoporous Spongelike ZnO Films Prepared from PS-b-P4VP Templated Sol-Gel Synthesis vol.1, pp.12, 2007, https://doi.org/10.1021/acsanm.8b02039