DOI QR코드

DOI QR Code

Studies on Enhanced Oxidation of Estrone and Its Voltammetric Determination at Carbon Paste Electrode in the Presence of Cetyltrimethylammonium Bromide

  • Yang, Chunhai (Key Laboratory of Biological Resources Protection and Utilization of Hubei Province) ;
  • Xie, Pingping (PetroChina DaLian Lube Oil R&D Institute)
  • Published : 2007.10.20

Abstract

The electrochemical behaviors of estrone in the presence of various surfactants were examined with great details. It is found that a cationic surfactant, cetyltrimethylammonium bromide (CTAB), obviously facilitates the electro-oxidation of estrone at carbon paste electrode (CPE) from the significant peak current enhancement and the negative shift of peak potential. Additionally, chronocoulometry and electrochemical impedance spectroscopy (EIS) were also used for further investigation of the electrode process of estrone, indicating that low concentration of CTAB exhibits excellent enhancement effects on the electrochemical oxidation of estrone, greatly enhances the diffusion coefficient and the electron transfer rate. Based on this, an electrochemical method was proposed for the determination of estrone. The oxidation peak current is proportional to the concentration of estrone in the ranges over 9.0 × 10?8 - 8.0 × 10?6 mol/L, and a low detection limit of 4.0 × 10?8 mol/L was obtained for 180s accumulation at open circuit (S/N = 3). Finally, this proposed method was demonstrated using estrone tablets with good satisfaction.

Keywords

References

  1. Abrams, L. S.; Skee, D. A.; Natarajan, J.; Wong, F. A.; Lasseter, K. C. Contraception 2001, 64, 287 https://doi.org/10.1016/S0010-7824(01)00273-6
  2. Choi, M. H.; Kim, K. R.; Chung, B. C. Analyst 2000, 125, 711 https://doi.org/10.1039/a909107f
  3. Hanselman, T. A.; Graetz, D. A.; Wilkie, A. C.; Szabo, N. J.; Diaz, C. S. Journal of Environmental Quality 2006, 35, 695 https://doi.org/10.2134/jeq2005.0282
  4. Havlikova, L.; Novakova, L.; Matysova, L.; Sicha, J.; Solich, P. Journal of Chromatography A 2006, 1119, 216 https://doi.org/10.1016/j.chroma.2006.01.085
  5. Mizuguchi, T.; Sadaka, S.; Ogasawara, C.; Shimada, K. Journal of Liquid Chromatography & Related Technologies 2006, 29, 903 https://doi.org/10.1080/10826070500531458
  6. Jozef, G.; Guy, M.; Fortune, K. Anal. Chim. Acta 1994, 290, 233 https://doi.org/10.1016/0003-2670(94)80060-X
  7. Hu, S. S.; He, Q.; Zhao, Z. F. Anal. Chim. Acta 1992, 259, 305 https://doi.org/10.1016/0003-2670(92)85380-O
  8. Hu, S. S.; He, Q.; Zhao, Z. F. Analyst 1992, 117, 181 https://doi.org/10.1039/an9921700181
  9. Hu, S. S.; Guo, M.; Hu, G.; Jiang, M. Anal. Lett. 1995, 28, 1993 https://doi.org/10.1080/00032719508000019
  10. Hu, S. S.; Wu, K. B.; Yi, H. C.; Cui, D. F. Anal. Chim. Acta 2002, 464, 209 https://doi.org/10.1016/S0003-2670(02)00496-8
  11. Sun, Y. Y.; Wu, K. B.; Hu, S. S. Microchim. Acta 2003, 142, 49 https://doi.org/10.1007/s00604-003-0949-5
  12. He, Q.; Yuan, S.; Chen, C.; Hu, S. S. Materials Science and Engineering C 2003, 23, 621 https://doi.org/10.1016/S0928-4931(03)00053-5
  13. Jin, G.; Lin, X. Electrochim. Acta 2005, 50, 3556 https://doi.org/10.1016/j.electacta.2005.01.001
  14. Hu, C. G.; Hu, S. S. Electrochimica Acta 2004, 49, 405 https://doi.org/10.1016/j.electacta.2003.08.022
  15. Wang, F.; Fei, J. J.; Hu, S. S. Colloid Surface B 2004, 39, 95 https://doi.org/10.1016/j.colsurfb.2004.07.007
  16. Huang, W. S. Bull. Korean Chem. Soc. 2005, 26, 1560 https://doi.org/10.5012/bkcs.2005.26.10.1560
  17. Hu, C. G.; Dang, X. P.; Hu, S. S. J. Electroanal. Chem. 2004, 572, 161 https://doi.org/10.1016/j.jelechem.2004.06.009
  18. Plavsic, M.; Krznaric, D.; Cosovic, B. Electroanalysis 1994, 6, 469 https://doi.org/10.1002/elan.1140060518
  19. Hu, S. S.; Yan, Y. Q.; Zhao, Z. F. Anal. Chim. Acta 1991, 248, 103 https://doi.org/10.1016/S0003-2670(00)80874-0
  20. Monika, S.; Kurt, K.; Georg, R. Anal. Chim. Acta 1997, 350, 319 https://doi.org/10.1016/S0003-2670(97)00306-1
  21. Monika, S.; Kurt, K.; Georg, R.; Christian, N. Talanta 1996, 43, 1915 https://doi.org/10.1016/0039-9140(96)01977-7
  22. Roto, R.; Villemure, G. J. Electroanal. Chem. 2002, 527, 123 https://doi.org/10.1016/S0022-0728(02)00834-3
  23. Gervasi, C. A.; Vallejo, A. E. Electrochim. Acta 2002, 47, 2259 https://doi.org/10.1016/S0013-4686(02)00066-X
  24. Kim, J. M.; Patwardhan, A.; Bottc, A.; Thompson, D. H. Biochim. Biophys. Acta 2003, 1617, 10 https://doi.org/10.1016/j.bbamem.2003.08.011
  25. Vazquez, M. I.; Benavente, J. J. Membr. Sci. 2003, 219, 59 https://doi.org/10.1016/S0376-7388(03)00179-0
  26. Hu, C. G.; Yang, C. H.; Hu, S. S. Electrochemistry Communications 2007, 9, 128 https://doi.org/10.1016/j.elecom.2006.08.055
  27. Connors, T. F.; Rusling, J. F.; Owlia, A. Anal. Chem. 1985, 57, 170 https://doi.org/10.1021/ac00279a042
  28. Kamau, G. N.; Leipert, T.; Shulkla, S.; Rusling, J. F. J. Electroanal. Chem. 1987, 233, 173 https://doi.org/10.1016/0022-0728(87)85014-3
  29. Yuan, S.; Hu, C. G.; Hu, S. S. Electrochimica Acta 2006, 51, 5274 https://doi.org/10.1016/j.electacta.2006.01.052
  30. Chidambaram, N.; Burgess, D. J. Colloids AND Surfaces A-Physicochemical AND Engineering Aspects 2001, 181, 271
  31. Laviron, E. J. Electroanal. Chem. 1974, 52, 355 https://doi.org/10.1016/S0022-0728(74)80448-1
  32. Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; Wiley: New York, 2001; p 603
  33. Xie, P. P.; Chen, X. X.; Wang, F.; Hu, S. S. Colloids and Surfaces B: Biointerfaces 2006, 48, 17 https://doi.org/10.1016/j.colsurfb.2006.01.003

Cited by

  1. Application of surfactants in voltammetric analysis vol.67, pp.11, 2012, https://doi.org/10.1134/S106193481211010X
  2. Recent Advances in Electroanalysis of Organic Compounds at Carbon Paste Electrodes vol.39, pp.3, 2007, https://doi.org/10.1080/10408340903011853