DOI QR코드

DOI QR Code

Size Control of Silicone Particles Using Sonochemical Approaches

  • Jhung, Sung-Hwa (Department of Chemistry, Kyungpook National University) ;
  • Yoo, Ki-Cheon (Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology) ;
  • Hwang, Young-Kyu (Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology) ;
  • Chang, Jong-San (Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology)
  • Published : 2007.12.20

Abstract

Particle size of silicones can be controlled by changing the reaction conditions such as temperature and concentrations of water and tetramethoxysilane (TMOS). Alternatively, the use of ultrasound radiation is also an elegant technique to decrease the particle size. Small silicone particles can be obtained at low temperature from diluted reagent containing TMOS, especially under the powerful ultrasound radiation. The size control may be explained by the rate of particle growth rather than that of nucleation.

Keywords

References

  1. US Patent 6495649, assigned to GE Toshiba Silicones Co., 2002
  2. http://www.gesilicones.com/siliconesweb/as1/en/techdocs/Tospearl%20Micro%20MB.indd.pdf
  3. Vogel, R.; Surawski, P. P. T.; Littleton, B. N.; Miller, C. R.; Lawrie, G. A.; Battersby, B. J.; Trau, M. J. Colloid Interface Sci. 2007, 310, 144 https://doi.org/10.1016/j.jcis.2007.01.092
  4. Stober, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62 https://doi.org/10.1016/0021-9797(68)90272-5
  5. Japanese Open Patents, JP-2003-183396-A, assigned to GE Toshiba Silicones Co., 2003
  6. Japanese Open Patents, JP-2003- 183395-A, assigned to GE Toshiba Silicones Co., 2003
  7. Japanese Open Patents, JP-2003-2973-A, assigned to GE Toshiba Silicones Co., 2003
  8. Japanese Open Patents, JP-2000-186148-A, assigned to GE Toshiba Silicones Co., 2000
  9. Gedanken, A. Ultrason. Sonochem. 2004, 11, 47 https://doi.org/10.1016/j.ultsonch.2004.01.037
  10. Andac, O.; Tather, M.; Sirkecioglu, A.; Ece, I.; Erdem-Senatalar, A. Microporous Mesoporous Mater. 2005, 79, 225 https://doi.org/10.1016/j.micromeso.2004.11.007
  11. Renzo, F. D. Catal. Today 1998, 41, 37 https://doi.org/10.1016/S0920-5861(98)00036-4
  12. Lethbridge, Z. A. D.; Williams, J. J.; Walton, R. I. ; Evans, K. E.; Smith, C. W. Microporous Mesoporous Mater. 2005, 79, 339 https://doi.org/10.1016/j.micromeso.2004.12.022
  13. Drews, T. O.; Tsapatsis, M. Current Opinion Colloid Interface Sci. 2005, 10, 233 https://doi.org/10.1016/j.cocis.2005.09.013
  14. Qiu, S.; Yu, J.; Zhu, G.; Terasaki, O.; Nozue, Y.; Pang, W.; Xu, R. Microporous Mesoporous Mater. 1998, 21, 245 https://doi.org/10.1016/S1387-1811(98)00048-1
  15. Lethbridge, Z. A. D.; Williams, J. J.; Walton, R. I.; Evans, K. E.; Smith, C. W. Microporous Mesoporous Mater. 1998, 79, 339
  16. Jhung, S. H.; Chang, J.-S.; Hwang, Y. K.; Park, S.-E. J. Mater. Chem. 2004, 14, 280 https://doi.org/10.1039/b309142b
  17. Jhung, S. H.; Jin, T.; Hwang, Y. K.; Chang, J.-S. Chem.-Eur. J. 2007, 14, 4410
  18. Jhung, S. H.; Lee, J.-H.; Yoon, J. W.; Serre, C.; Ferey, G.; Chang, J.-S. Adv. Mater. 2007, 19, 121 https://doi.org/10.1002/adma.200601604
  19. Choi, J. Y.; Kim, J.; Jhung, S. H.; Kim, H.-K.; Chang, J.-S.; Chae, H. K. Bull. Kor. Chem. Soc. 2006, 27, 1523 https://doi.org/10.5012/bkcs.2006.27.10.1523
  20. Jhung, S. H.; Lee, J.-H.; Chang, J.-S. Bull. Kor. Chem. Soc. 2005, 26, 880 https://doi.org/10.5012/bkcs.2005.26.6.880
  21. Jhung, S. H.; Lee, J.-H.; Yoon, J. W.; Hwang, Y. K.; Hwang, J.-S.; Park, S.-E.; Chang, J.-S. Mater. Lett. 2004, 58, 3161 https://doi.org/10.1016/j.matlet.2004.06.006
  22. Jhung, S. H.; Lee, J.-H.; Chang, J.-S. Microporous Mesoporous Mater. 2007, in press (DOI: 10.1016/j.micromeso.2007.09.039)

Cited by

  1. Carrier separation and charge transport characteristics of reduced graphene oxide supported visible-light active photocatalysts vol.18, pp.7, 2016, https://doi.org/10.1039/C5CP08041J
  2. Synthesis of Monodisperse Hydrophobic Silicone Particles in the Submicron Size vol.89, pp.4, 2016, https://doi.org/10.4011/shikizai.89.107
  3. Ultrasonic-Assistance and Aging Time Effects on the Zeolitation Process of BZSM-5 Zeolite vol.636, pp.15, 2010, https://doi.org/10.1002/zaac.201000158
  4. Effects of ultrasonic treatment on zeolite synthesized from coal fly ash vol.18, pp.2, 2007, https://doi.org/10.1016/j.ultsonch.2010.08.011
  5. THE EFFECT OF ULTRASONIC AND MICROWAVE-ASSISTED AGING ON THE SYNTHESIS OF ZEOLITE P FROM IRANIAN PERLITE USING BOX-BEHNKEN EXPERIMENTAL DESIGN vol.201, pp.7, 2007, https://doi.org/10.1080/00986445.2013.793675
  6. Morphology control of silicone/poly(methyl methacrylate) (elastic/glassy) composite particles vol.11, pp.39, 2020, https://doi.org/10.1039/d0py01102a