DOI QR코드

DOI QR Code

Nucleotide and Manganese Ion is Required for Chaperonin Function of the Hyperthermostable Group II Chaperonin α from Aeropyrum pernix K1

  • Jang, Kyoung-Jin (Department of Biomaterial Control, Dong-Eui University) ;
  • Bae, Yu-Jin (Department of Biomaterial Control, Dong-Eui University) ;
  • Jeon, Sung-Jong (Department of Biomaterial Control, Dong-Eui University) ;
  • Kim, Kyung-Hwa (Department of Bioengineering, Hanyang University) ;
  • Lee, Jung-Hee (Department of Biochemistry, Inje University College of Medicine) ;
  • Yea, Sung-Su (Department of Biochemistry, Inje University College of Medicine) ;
  • Oh, Sang-Taek (PharmcoGenomic Research Center, Inje University College of Medicine) ;
  • Jeong, Yong-Joo (Department of Bio and Nanochemistry, Kookmin University) ;
  • Kim, Dong-Eun (Department of Bioscience and Biotechnology, Konkuk University)
  • Published : 2007.12.20

Abstract

Prevention of thermal aggregation of the denatured protein by the group II chaperonin from the aerobic hyperthermophilic crenarchaeon Aeropyrum pernix K1 (ApcpnA) has been investigated. ApcpnA exists as a homo-oligomer in a ring structure, which protects thermal aggregation of the chemically denatured bovine rhodanese at 50 oC. ApcpnA alone is not sufficient for chaperonin activity, but the chaperonin activity is greatly enhanced in the presence of manganese ion and ATP. Compared to the mesophilic chaperonin GroEL/GroES, ApcpnA is more activated at a higher temperature and protects the aggregation-prone unfolded state of the denatured rhodanese from thermal aggregation. Binding of ATP is sufficient for ApcpnA to perform the chaperonin function in vitro, but hydrolysis of ATP is not necessarily required. We propose that utilization of Mn2+ and adenosine nucleotide regardless of ATP hydrolysis may be one of peculiar properties of archaeal chaperonins.

Keywords

References

  1. Bukau, B.; Horwich, A. L. Cell 1998, 92, 351 https://doi.org/10.1016/S0092-8674(00)80928-9
  2. Gething, M. J.; Sambrook, J. Nature 1992, 355, 33 https://doi.org/10.1038/355033a0
  3. Gutsche, I.; Essen, L. O.; Baumeister, W. J. Mol. Biol. 1999, 293, 295 https://doi.org/10.1006/jmbi.1999.3008
  4. Klumpp, M.; Baumeister, W.; Essen, L. O. Cell 1997, 91, 263 https://doi.org/10.1016/S0092-8674(00)80408-0
  5. Weissman, J. S.; Rye, H. S.; Fenton, W. A.; Beechem, J. M.; Horwich, A. L. Cell 1996, 84, 481 https://doi.org/10.1016/S0092-8674(00)81293-3
  6. Mayhew, M.; da Silva, A. C.; Martin, J.; Erdjument-Bromage, H.; Tempst, P.; Hartl, F. U. Nature 1996, 379, 420
  7. Archibald, J. M.; Logsdon, J. M.; Doolittle, W. F. Curr. Biol. 1999, 9, 1053 https://doi.org/10.1016/S0960-9822(99)80457-6
  8. Kagawa, H. K.; Osipiuk, J.; Maltsev, N.; Overbeek, R.; Quaite- Randall, E.; Joachimiak, A.; Trent, J. D. J. Mol. Biol. 1995, 253, 712
  9. Nitsch, M.; Klumpp, M.; Lupas, A.; Baumeister, W. J. Mol. Biol. 1997, 267, 142 https://doi.org/10.1006/jmbi.1996.0849
  10. Andra, S.; Frey, G.; Nitsch, M.; Baumeister, W.; Stetter, K. O. FEBS Lett. 1996, 379, 127 https://doi.org/10.1016/0014-5793(95)01493-4
  11. Kawarabayasi, Y.; Hino, Y.; Horikawa, H.; Yamazaki, S.; Haikawa, Y.; Jin-no, K.; Takahashi, M.; Sekine, M.; Baba, S.; Ankai, A.; Kosugi, H.; Hosoyama, A.; Fukui, S.; Nagai, Y.; Nishijima, K.; Nakazawa, H.; Takamiya, M.; Masuda, S.; Funahashi, T.; Tanaka, T.; Kudoh, Y.; Yamazaki, J.; Kushida, N.; Oguchi, A.; Kikuchi, H. et al. DNA Res. 1999, 6, 83
  12. Son, H. J.; Shin, E. J.; Nam, S. W.; Kim, D. E.; Jeon, S. J. FEMS Microbiol. Lett. 2007, 266, 103 https://doi.org/10.1111/j.1574-6968.2006.00513.x
  13. Minuth, T.; Frey, G.; Lindner, P.; Rachel, R.; Stetter, K. O.; Jaenicke, R. Eur. J. Biochem. 1998, 258, 837 https://doi.org/10.1046/j.1432-1327.1998.2580837.x
  14. Yoshida, T.; Yohda, M.; Iida, T.; Maruyama, T.; Taguchi, H.; Yazaki, K.; Ohta, T.; Odaka, M.; Endo, I.; Kagawa, Y. J. Mol. Biol. 1997, 273, 635 https://doi.org/10.1006/jmbi.1997.1337
  15. Langer, T.; Pfeifer, G.; Martin, J.; Baumeister, W.; Hartl, F. U. EMBO J. 1992, 11, 4757
  16. Schmidt, M.; Buchner, J.; Todd, M. J.; Lorimer, G. H.; Viitanen, P. V. J. Biol. Chem. 1994, 269, 10304
  17. Panda, M.; Gorovits, B. M.; Horowitz, P. M. J. Biol. Chem. 2000, 275, 63 https://doi.org/10.1074/jbc.275.1.63
  18. Bhattacharyya, A. M.; Horowitz, P. M. J. Biol. Chem. 2001, 276, 28739 https://doi.org/10.1074/jbc.M102500200
  19. Okochi, M.; Matsuzaki, H.; Nomura, T.; Ishii, N.; Yohda, M. Extremophiles 2005, 9, 127 https://doi.org/10.1007/s00792-004-0427-y
  20. Large, A. T.; Kovacs, E.; Lund, P. A. FEBS Lett. 2002, 532, 309 https://doi.org/10.1016/S0014-5793(02)03685-2
  21. Andra, S.; Frey, G.; Jaenicke, R.; Stetter, K. O. Eur. J. Biochem. 1998, 255, 93 https://doi.org/10.1046/j.1432-1327.1998.2550093.x
  22. Martin, J.; Mayhew, M.; Langer, T.; Hartl, F. U. Nature 1993, 366, 228 https://doi.org/10.1038/366228a0
  23. Hayer-Hartl, M. K.; Weber, F.; Hartl, F. U. EMBO J. 1996, 15, 6111
  24. Hongo, K.; Hirai, H.; Uemura, C.; Ono, S.; Tsunemi, J.; Higurashi, T.; Mizobata, T.; Kawata, Y. FEBS Lett. 2006, 580, 34 https://doi.org/10.1016/j.febslet.2005.11.043