DOI QR코드

DOI QR Code

Density Functional Theory Study of Acetonitrile -Water Clusters: Structures and Infrared Frequency Shifts

  • Ahn, Doo-Sik (College of Environmental Science and Applied Chemistry (BK21), Kyunghee University) ;
  • Lee, Sung-Yul (College of Environmental Science and Applied Chemistry (BK21), Kyunghee University)
  • Published : 2007.05.20

Abstract

We present calculations for the acetonitrile - water clusters to examine the nature of interactions in the mixed clusters. We calculate conformers of various composition, either of σ -type (-OH and -CN binding linearly) or π -type (-OH and -CN interacting perpendicularly) structures for the acetonitrile - water clusters. We predict that the IR frequency of the proton-accepting C≡N stretching mode red-shifts in the σ -type clusters and blueshifts in π -type conformers, whereas the proton-donating ?OH stretching frequency red-shifts in all cases. We find that this intriguing pattern also applies to the acetonitrile - water clusters of various molar ratio.

Keywords

References

  1. Zwier, T. S. Annu. Rev. Phys. Chem. 1996, 47, 205 https://doi.org/10.1146/annurev.physchem.47.1.205
  2. Castleman, A. W.; Bowen, K. H. J. Phys. Chem. 1996, 100, 12911 https://doi.org/10.1021/jp961030k
  3. Ahn, D.-S.; Park, S.-W.; Jeon, I.-S.; Lee, M.-K.; Kim, N.-H.; Han, Y.-H.; Lee, S. J. Phys. Chem. B 2004, 107, 14109
  4. Ahn, D.-S.; Kang, A.-R.; Lee, S.; Kim, B.; Kim, S. K.; Neuhauser, D. J. Chem. Phys. 2005, 122, 084310 https://doi.org/10.1063/1.1850893
  5. Barth, H.-D.; Buchhold, K.; Djafari, S.; Reimann, B.; Lommatzsch, U.; Brutschy, B. Chem. Phys. 1998, 239, 49
  6. Auspurger, J. D.; Dykstra, C. E.; Zwier, T. S.; J. Phys. Chem. 1993, 97, 980 https://doi.org/10.1021/j100107a002
  7. Fredericks, S. Y.; Jordan, K. D.; Zwier, T. S. J. Phys. Chem. 1996, 100, 7810 https://doi.org/10.1021/jp9535710
  8. Garrett, A. W.; Zwier, T. S. J. Chem. Phys. 1992, 96, 3402 https://doi.org/10.1063/1.461941
  9. Lee, K. T.; Sung, J.; Lee, K. J.; Kim, S. K.; Park, Y. D. J. Chem. Phys. 2002, 116, 8251 https://doi.org/10.1063/1.1477452
  10. Ahn, D.-S.; Lee, S.; Kim, B. Chem. Phys. Lett. 2004, 390, 384 https://doi.org/10.1016/j.cplett.2004.03.152
  11. Lee, K.-M.; Park, S.-W.; Jeon, I.-S.; Lee, B.-R.; Ahn, D.-S.; Lee, S. Bull. Korean Chem. Soc. 2005, 26, 909 https://doi.org/10.5012/bkcs.2005.26.6.909
  12. Janzen, Ch.; Spangenberg, D.; Roth, W.; Kleinermanns, K. J. Chem. Phys. 1999, 110, 9898 https://doi.org/10.1063/1.478863
  13. Ahn, D.-S.; Park, S.-W.; Lee, S.; Kim, B. J. Phys. Chem. A 2003, 107, 131 https://doi.org/10.1021/jp021519f
  14. Ahn, D.-S.; Lee, S.; Cheong, W. J. Bull. Korean Chem. Soc. 2004, 25, 1161 https://doi.org/10.5012/bkcs.2004.25.8.1161
  15. Ebata, T.; Fujii, A.; Mikami, N. Int. Rev. Phys. Chem. 1998, 17, 331 https://doi.org/10.1080/014423598230081
  16. Gerhards, M.; Kleinermanns, K. J. Chem. Phys. 1995, 103, 7392 https://doi.org/10.1063/1.470310
  17. Feller, D.; Feyereisen, M. W. J. Comp. Chem. 1993, 14, 1027 https://doi.org/10.1002/jcc.540140904
  18. Kryachko, E. S.; Nguyen, M. T. J. Chem. Phys. 2001, 115, 833 https://doi.org/10.1063/1.1371516
  19. Ishikawa, S.; Ebata, T.; Mikami, N. J. Chem. Phys. 1999, 110, 9504 https://doi.org/10.1063/1.478915
  20. El-Shall, M. S.; Daly, G. M.; Wright, D. J. Chem. Phys. 2001, 116, 10253 https://doi.org/10.1063/1.1476317
  21. Cramer, C. J.; Truhlar, D. G. Chem. Rev. 1999, 99, 2161 https://doi.org/10.1021/cr960149m
  22. Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100, 4253 https://doi.org/10.1021/cr990050q
  23. Jamroz, D.; Stangret, J.; Lindgren, J. J. Am. Chem. Soc. 1993, 115, 6165 https://doi.org/10.1021/ja00067a036
  24. Rowlen, K. L.; Harris, J. M. Anal. Chem. 1991, 63, 964 https://doi.org/10.1021/ac00010a006
  25. Shin, D.; Wijnen, J. W.; Engberts, J. B. F. N.; Wakisaka, A. J. Phys. Chem. B 2002, 106, 6014 https://doi.org/10.1021/jp020414+
  26. Kovacs, H.; Laaksonen, A. J. Am. Chem. Soc. 1991, 113, 5596 https://doi.org/10.1021/ja00015a013
  27. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian, Inc.: Wallingford, CT, 2004
  28. Becke, A. D. Phys. Rev. A 1988, 38, 3098 https://doi.org/10.1103/PhysRevA.38.3098
  29. Lee, C.; Yang, W.; Parr, R. P. Phys. Rev. B 1988, 37, 785 https://doi.org/10.1103/PhysRevB.37.785
  30. Park, Y. C.; Lee, J. S. Bull. Korean Chem. Soc. 2007, 28, 386 https://doi.org/10.5012/bkcs.2007.28.3.386
  31. Ishikawa, S.; Ebata, T.; Mikami, N. J. Chem. Phys. 1999, 110, 9504 https://doi.org/10.1063/1.478915
  32. Kim, K. S.; Tarakeshwar, P.; Lee, J. Y. Chem. Rev. 2000, 100, 4145 https://doi.org/10.1021/cr990051i
  33. Kim, K. S.; Tarakeshwar, P.; Lee, J. Y. Chem. Rev. 2000, 100, 4145 https://doi.org/10.1021/cr990051i
  34. Ahn, D.-S.; Lee, S. Bull. Korean Chem. Soc. 2003, 24, 545 https://doi.org/10.5012/bkcs.2003.24.5.545

Cited by

  1. Interaction of Acetonitrile with Water-Ice: An Infrared Spectroscopic Study vol.119, pp.21, 2015, https://doi.org/10.1021/jp512607v
  2. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  3. Suppression of the Methyl Radical Loss from Acetone Cation within (CH3COCH3)n{CH3COCH3}+ Clusters vol.29, pp.8, 2007, https://doi.org/10.5012/bkcs.2008.29.8.1519
  4. Binary-Phase Acetonitrile and Water Aerosols: Infrared Studies and Theoretical Simulation at Titan Atmosphere Conditions vol.2, pp.8, 2007, https://doi.org/10.1021/acsearthspacechem.8b00059
  5. Application of the Approximate 3D-Reference Interaction Site Model (RISM) Molecular Solvation Theory to Acetonitrile as Solvent vol.124, pp.22, 2007, https://doi.org/10.1021/acs.jpcb.0c03230