DOI QR코드

DOI QR Code

Reactions of Gas-Phase Atomic Hydrogen with Chemisorbed Hydrogen on a Graphite Surface

  • Ree, Jong-Baik (Department of Chemistry Education, Chonnam National University) ;
  • Kim, Yoo-Hang (Department of Chemistry and Center for Chemical Dynamics, Inha University) ;
  • Shin, Hyung-Kyu (Department of Chemistry, University of Nevada)
  • Published : 2007.04.20

Abstract

The reaction of gas-phase hydrogen atoms H with H atoms chemisorbed on a graphite surface has been studied by the classical dynamics. The graphite surface is composed of the surface and 10 inner layers at various gas and surface temperatures (Tg, Ts). Three chains in the surface layer and 13 chains through the inner layers are considered to surround the adatom site. Four reaction pathways are found: H2 formation, H-H exchange, H desorption, and H adsorption. At (1500 K, 300 K), the probabilities of H2 formation and H desorption are 0.28 and 0.24, respectively, whereas those of the other two pathways are in the order of 10-2. Half the reaction energy deposits in the vibrational motion of H2, thus leading to a highly excited state. The majority of the H2 formation results from the chemisorption-type H(g)-surface interaction. Vibrational excitation is found to be strong for H2 formed on a cold surface (~10 K), exhibiting a pronounced vibrational population inversion. Over the temperature range (10-100 K, 10 K), the probabilities of H2 formation and H-H exchange vary from 0 to ~0.1, but the other two probabilities are in the order of 10-3.

Keywords

References

  1. Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; Van Nostrand Reinhold: New York, 1979
  2. Tully, J. C. J. Chem. Phys. 1980, 73, 6333 https://doi.org/10.1063/1.440097
  3. Christmann, K. Surf. Sci. Rep. 1988, 9, 1 https://doi.org/10.1016/0167-5729(88)90009-X
  4. Jeloaica, L.; Sidis, V. Chem. Phys. Lett. 1999, 300, 157 https://doi.org/10.1016/S0009-2614(98)01337-2
  5. Van de Walle, C. G.; Street, R. A. Phys. Rev. 1995, B51, 10615
  6. Kratzer, P.; Hammer, B.; Norskov, J. K. Phys. Rev. 1995, B51, 13432
  7. Upton, T. H.; Goddard, W. A. III Phys. Rev. Lett. 1979, 42, 472 https://doi.org/10.1103/PhysRevLett.42.472
  8. Nordlander, P.; Holloway, S.; Noerskov, J. K. Surf. Sci. 1984, 136, 59 https://doi.org/10.1016/0039-6028(84)90655-1
  9. Kratzer, P.; Brenig, W. Surf. Sci. 1991, 254, 275 https://doi.org/10.1016/0039-6028(91)90659-G
  10. Farebrother, A. J.; Meijer, A. J. H. M.; Clary, D. C.; Fisher, A. J. Chem. Phys. Lett. 2000, 319, 303 https://doi.org/10.1016/S0009-2614(00)00128-7
  11. Meijer, A. J. H. M.; Farebrother, A. J.; Clary, D. C.; Fisher, A. J. J. Phys. Chem. A 2001, 105, 2173 https://doi.org/10.1021/jp003839+
  12. Jackson, B.; Lemoine, D. J. Chem. Phys. 2001, 114, 474 https://doi.org/10.1063/1.1328041
  13. Ghio, E.; Mattera, L.; Salvo, C.; Tommasini, F.; Valbusa, U. J. Chem. Phys. 1980, 73, 556 https://doi.org/10.1063/1.439855
  14. Parneix, P.; Bréchignac, P. Astron. Astrophys. 1998, 334, 363
  15. Ree, J.; Kim, Y. H.; Shin, H. K. J. Phys. Chem. A 2003, 107, 5101 https://doi.org/10.1021/jp030227r
  16. Ree, J.; Kim, Y. H.; Shin, H. K. Chem. Phys. Lett. 2002, 353, 368 https://doi.org/10.1016/S0009-2614(02)00026-X
  17. Sha, X.; Jackson, B.; Lemoine, D. J. Chem. Phys. 2002, 116, 7158 https://doi.org/10.1063/1.1463399
  18. Morisset, S.; Aguillon, F.; Sizun, M.; Sidis, V. J. Phys. Chem. A 2004, 108, 8571 https://doi.org/10.1021/jp049969q
  19. Morisset, S.; Aguillon, F.; Sizun, M.; Sidis, V. J. Chem. Phys. 2004, 121, 6493 https://doi.org/10.1063/1.1781118
  20. Lee, S. K.; Ree, J.; Kim, Y. H.; Shin, H. K. Bull. Korean Chem. Soc. 2005, 26, 1369 https://doi.org/10.5012/bkcs.2005.26.9.1369
  21. Oh, H.-G.; Ree, J.; Lee, S. K.; Kim, Y. H. Bull. Korean Chem. Soc. 2006, 27, 1641 https://doi.org/10.5012/bkcs.2006.27.10.1641
  22. Ree, J.; Kim, Y. H.; Shin, H. K. J. Chem. Phys. 1996, 104, 742 https://doi.org/10.1063/1.470799
  23. Blanco, A.; Fonti, S.; Muci, A. M.; Orofino, V. Astrophys. J. 1996, 472, 419 https://doi.org/10.1086/178074
  24. Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Astrophys. J. 1987, 314, 352 https://doi.org/10.1086/165065
  25. Sofia, U. J.; Cardelli, J. A.; Savage, B. D. Astrophys. J. 1994, 430, 650 https://doi.org/10.1086/174438
  26. Guillois, O.; Ledoux, G.; Nenner, I.; Papoular, R.; Reynaud, C. Faraday Discuss. 1998, 109, 335 https://doi.org/10.1039/a800068i
  27. Kuppers, J. Surf. Sci. Rep. 1995, 22, 249 https://doi.org/10.1016/0167-5729(96)80002-1
  28. Lamoen, D.; Persson, B. N. J. J. Chem. Phys. 1998, 108, 3332 https://doi.org/10.1063/1.475732
  29. Lang, L.; Doyen-Lang, S.; Charlier, A.; Charlier, M. F. Phys. Rev. B 1994-II, 49, 5672
  30. Sidis, V.; Jeloaica, L.; Borisov, A. G.; Deutscher, S. A. In Molecular Hydrogen in Space; Combes, F.; Pineau des Forets, G., Eds.; Cambridge Univ. Press: 2000; pp 89-98
  31. Morisset, S.; Aguillon, F.; Sizun, M.; Sidis, V. Phys. Chem. Chem. Phys. 2003, 5, 506 https://doi.org/10.1039/b208492a
  32. Mizushima, M. The Theory of Rotating Diatomic Molecules; Wiley: New York, 1975
  33. Dinger, A.; Lutterloh, C.; Biener, J.; Küppers, J. Surf. Sci. 1999, 421, 17 https://doi.org/10.1016/S0039-6028(98)00799-7
  34. Adelman, S. A. J. Chem. Phys. 1979, 71, 4471 https://doi.org/10.1063/1.438200
  35. American Institute of Physics Handbook, 3rd ed.; Gray, D. E., Ed.; McGraw-Hill: New York, 1972; section 4, p 115
  36. Kim, Y. H.; Ree, J.; Shin, H. K. J. Chem. Phys. 1998, 108, 9821 https://doi.org/10.1063/1.476457
  37. Eenshuistra, P. J.; Bonnie, J. H. M.; Los, J.; Hopman, H. J. Phys. Rev. Lett. 1988, 60, 341 https://doi.org/10.1103/PhysRevLett.60.341
  38. Jackson, B.; Persson, M. J. Chem. Phys. 1995, 103, 6257 https://doi.org/10.1063/1.470404
  39. Shin, H. Chem. Phys. Lett. 1995, 244, 235 https://doi.org/10.1016/0009-2614(95)00877-7
  40. Polanyi, J. C.; Tardy, D. C. J. Chem. Phys. 1969, 51, 5717 https://doi.org/10.1063/1.1672005
  41. Polanyi, J. C. Acc. Chem. Res. 1972, 5, 161 https://doi.org/10.1021/ar50053a001
  42. Kolos, W.; Szalewicz, K.; Monkhorst, H. J. J. Chem. Phys. 1986, 84, 3278 https://doi.org/10.1063/1.450258
  43. Kolos, W.; Wolniewicz, L. J. Chem. Phys. 1968, 49, 404 https://doi.org/10.1063/1.1669836
  44. Gould, R. J.; Salpeter, E. E. Astrophys. J. 1963, 138, 393 https://doi.org/10.1086/147654
  45. Black, J. H.; Dalgarno, A. Astrophys. J. 1976, 203, 132 https://doi.org/10.1086/154055
  46. Duley, W. W.; Williams, D. A. Interstellar Chemistry; Academic Press: London, 1984
  47. Ree, J.; Kim, Y. H.; Shin, H. K. Chem. Phys. Lett. 2002, 353, 368 https://doi.org/10.1016/S0009-2614(02)00026-X
  48. Ko, Y.; Ree, J.; Kim, Y. H.; Shin, H. K. Bull. Korean Chem. Soc. 2002, 23, 1737 https://doi.org/10.5012/bkcs.2002.23.12.1737

Cited by

  1. On the PES for the interaction of an H atom with an H chemisorbate on a graphenic platelet vol.13, pp.39, 2011, https://doi.org/10.1039/c1cp22202c
  2. Hydrogen Recombination and Dimer Formation on Graphite from Ab Initio Molecular Dynamics Simulations vol.120, pp.27, 2016, https://doi.org/10.1021/acs.jpca.5b12761
  3. Unrestricted study of the Eley–Rideal formation of H2 on graphene using a new multidimensional graphene–H–H potential: role of the substrate vol.11, pp.15, 2009, https://doi.org/10.1039/b818614f
  4. Reaction between Gas-phase Hydrogen Atom and Chemisorbed Bromine Atoms on a Silicon(001)-(2X1) Surface vol.28, pp.12, 2007, https://doi.org/10.5012/bkcs.2007.28.12.2271
  5. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  6. Formation of Complex XeHCl+ in the Xe++ HCl Collision vol.29, pp.4, 2007, https://doi.org/10.5012/bkcs.2008.29.4.795
  7. Exploration of Graphene Defect Reactivity toward a Hydrogen Radical Utilizing a Preactivated Circumcoronene Model vol.125, pp.5, 2007, https://doi.org/10.1021/acs.jpca.0c09255