DOI QR코드

DOI QR Code

Fluorescence Quenching of Norfloxacin by Divalent Transition Metal Cations

  • Park, Hyoung-Ryun (Department of Chemistry and Nano Technology Research Center, Chonnam National University) ;
  • Seo, Jung-Ja (Department of Chemistry and Nano Technology Research Center, Chonnam National University) ;
  • Shin, Sung-Chul (Department of Chemistry and Research Institute of Life Science, Gyeongsang National University) ;
  • Lee, Hyeong-Su (Department of Chemical Education and Research Institute of Life Science, Gyeongsang National University) ;
  • Bark, Ki-Min (Department of Chemical Education and Research Institute of Life Science, Gyeongsang National University)
  • Published : 2007.09.20

Abstract

Fluorescence quenching of norfloxacin (NOR) by Cu2+, Ni2+, Co2+ and Mn2+ was studied in water. The change in the fluorescence intensity and lifetime was measured as a function of quencher concentration at various temperatures. According to the Stern-Volmer plots, the NOR was quenched both by collisions and complex formation with the same quencher. However, the static quenching had a more important effect on the emission. Large static and dynamic quenching constants support significant ion-dipole and orbital-orbital interactions between NOR and cations. The both quenching constants by Cu2+ were the largest among quenchers. Also, quenching mechanism of Cu2+ was somewhat different. The change in the absorption spectra due to the quencher provided information on static quenching. The fluorescence of NOR was relatively insensitive to both the dynamic and static quenching compared with other quinolone antibiotics. This property can be explained by the twisted intramolecular charge transfer.

Keywords

References

  1. Appelbaum, P. C.; Hunter, P. A. Int. J. Antimicrob. Agent 2000, 16, 5 https://doi.org/10.1016/S0924-8579(00)00192-8
  2. Mizuki, Y.; Fujiwara, I.; Yamaguchi, T. J. Antimicrob. Chemother. 1996, 37(Suppl. A), 41 https://doi.org/10.1093/jac/37.suppl_A.41
  3. Ball, P. J. Antimicrob. Chemother. 2000, 46(Topic T1), 17 https://doi.org/10.1093/oxfordjournals.jac.a020889
  4. Koga, H.; Itoh, A.; Murayama, S.; Suzue, S.; Irikura, T. J. Med. Chem. 1980, 23, 1358 https://doi.org/10.1021/jm00186a014
  5. Sanz-Nebot, V.; Valls, I.; Barbero, D.; Barbosa, J. Acta Chemica Scandinavica 1997, 51, 896
  6. Andriole, V. T.; Smith, J. T.; Lewin, C. S. The Quinolones; Academic press: New York, U.S.A., 1988; p 23
  7. Martinez, L.; Bilski, P.; Chignell, C. F. Photochem. Photobiol. 1996, 64, 911 https://doi.org/10.1111/j.1751-1097.1996.tb01855.x
  8. Park, H. R.; Lee, H. C.; Kim, T. H.; Lee, J. K.; Yang, K.; Bark, K. M. Photochem. Photobiol. 2000, 71, 281 https://doi.org/10.1562/0031-8655(2000)071<0281:SPOFAA>2.0.CO;2
  9. Kang, J. S.; Kim, T. H.; Park, K. B.; Chung, B. H.; Youn, J. I. Photodermatol. Photoimmunol. Photomed. 1993, 9, 159
  10. Sun, Y. W.; Heo, E. P.; Cho, Y. H.; Bark, K. M.; Yoon, T. J.; Kim, T. H. Photodermatol. Photoimmunol. Photomed. 2001, 17, 172 https://doi.org/10.1034/j.1600-0781.2001.170406.x
  11. Ferguson, J. Photochem. Photobiol. 1995, 62, 954 https://doi.org/10.1111/j.1751-1097.1995.tb02392.x
  12. Park, H. R.; Oh, C. H.; Lee, H. C.; Lim, S. R.; Yang, K.; Bark, K. M. Photochem. Photobiol. 2004, 80, 554 https://doi.org/10.1562/2004-04-23-RA-14.1
  13. Park, H. R.; Oh, C. H.; Lee, H. C.; Lee, J. K.; Yang, K.; Bark, K. M. Photochem. Photobiol. 2002, 75, 237 https://doi.org/10.1562/0031-8655(2002)075<0237:SPOFAI>2.0.CO;2
  14. Rettig, W. J. Mol. Structure 1982, 84, 303 https://doi.org/10.1016/0022-2860(82)85263-0
  15. Park, H. R.; Chung, K. Y.; Lee, H. C.; Lee, J. K.; Bark, K. M. Bull. Korean Chem. Soc. 2000, 21, 849
  16. Slater, J.; Mildvan, A.; Loeb, L. Biochem. Biophys. Res. Commun. 1971, 44, 37 https://doi.org/10.1016/S0006-291X(71)80155-9
  17. Springgate, C.; Mildvan, A.; Abramson, R.; Engle, J.; Loeb, L. J. Biol. Chem. 1973, 248, 5987
  18. Valenzuela, P.; Morris, R.; Faras, A.; Levinson, W.; Rutter, W. Biochem. Biophys. Res. Commun. 1973, 53, 1036 https://doi.org/10.1016/0006-291X(73)90196-4
  19. Park, H. R.; Oh, C. H.; Lee, H. C.; Choi, J. G.; Jung, B. I.; Bark, K. M. Bull. Korean Chem. Soc. 2006, 27, 2002 https://doi.org/10.5012/bkcs.2006.27.12.2002
  20. Lakowicz, J. R. Principles of fluorescence spectroscopy, 2nd ed.; Kluwer Academic/Plenum Publishers: New York, U.S.A., 1999
  21. Eaton, D. F. Reference compounds for fluorescence measurement; IUPAC Organic Chem. Division: Wilmington, U.S.A., 1987; p 1
  22. Bark, K. M.; Force, R. K. Spectrochim. Acta 1993, 49(A), 1605 https://doi.org/10.1016/0584-8539(93)80117-S
  23. Demas, J. N.; Grosby, G. A. J. Phys. Chem. 1971, 75, 2463 https://doi.org/10.1021/j100685a009
  24. Zhang, J.; Bright, F. V. J. Phys. Chem. 1991, 95, 7900 https://doi.org/10.1021/j100173a064
  25. Lakowicz, J. R.; Lackzo, G.; Gryczynski, I.; Szmacinski, H.; Wiczk, W. J. Photochem. Photobiol. B Biol. 1988, 2, 295 https://doi.org/10.1016/1011-1344(88)85050-4
  26. Jameson, D. M.; Gratton, E.; Hall, R. D. Appl. Spectrosc. Rev. 1984, 20, 105
  27. Kessler, M. A. Anal. Chim. Acta 1998, 364, 125 https://doi.org/10.1016/S0003-2670(98)00152-4
  28. Gonzalez-Jimmenez, J.; Frutos, G.; Cayre, I. Biochem. Pharmacol. 1992, 44, 824
  29. Thulborn, K. R.; Sawyer, W. H. Biochim. Biophys. Acta 1978, 511, 125 https://doi.org/10.1016/0005-2736(78)90308-5
  30. Seidel, C. A. M.; Schulz, A.; Sauer, M. H. M. J. Phys. Chem. 1996, 100, 5541 https://doi.org/10.1021/jp951507c
  31. Kubota, Y.; Motoda, Y.; Shigemune, Y.; Fujisaki, Y. Photochem. Photobiol. 1979, 29, 1099 https://doi.org/10.1111/j.1751-1097.1979.tb07826.x
  32. Posokhov, Y.; Kus, M.; Biner, H.; Gumus, M. K.; Tugcu, F. T.; Aydemir, E.; Kaban, S.; Icli, S. J. Photochem. Photobiol. 2004, 161, 247 https://doi.org/10.1016/j.nainr.2003.08.005
  33. Fabbrizzi, L.; Licchelli, M.; Pallavicini, P. Acc. Chem. Res. 1999, 32, 846 https://doi.org/10.1021/ar990013l
  34. Fabbrizzi, L.; Poggi, A. Chem. Soc. Rev. 1995, 24, 197 https://doi.org/10.1039/cs9952400197
  35. Drevensek, P.; Turel, I.; Ulrih, N. P. J. Inorg. Biochem. 2003, 96, 407 https://doi.org/10.1016/S0162-0134(03)00179-X

Cited by

  1. Fluorimetric Study on the Interaction between Norfloxacin and Proflavine Hemisulphate vol.21, pp.4, 2011, https://doi.org/10.1007/s10895-011-0873-8
  2. Studies on the Interaction between Catechin and Metal Ions vol.33, pp.12, 2012, https://doi.org/10.5012/bkcs.2012.33.12.4235
  3. vol.37, pp.11, 2016, https://doi.org/10.1002/bkcs.10971
  4. A Fluorescence Quenching Analysis of the Binding of Fluoroquinolones to Humic Acid vol.71, pp.11, 2017, https://doi.org/10.1177/0003702817715655
  5. Nitric oxide binding and photodelivery based on ruthenium(ii) complexes of 4-arylazo-3,5-dimethylpyrazole pp.27, 2008, https://doi.org/10.1039/b718645b
  6. Fluorescence Properties of Some Triazene Polyacrylates for Possible Sensor Applications vol.41, pp.9, 2009, https://doi.org/10.1295/polymj.PJ2009012
  7. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  8. Flavonoids as Substrates of Bacillus halodurans O-Methyltransferase vol.29, pp.7, 2007, https://doi.org/10.5012/bkcs.2008.29.7.1311
  9. Physicochemical Properties of Protoporphyrin IX by Metal Ions in Acetonitrile-Water Mixture Solution vol.31, pp.6, 2007, https://doi.org/10.5012/bkcs.2010.31.6.1633
  10. A simple innovative spectrofluorometric method for the determination of alendronate in bulk and in pharmaceutical tablets vol.34, pp.3, 2007, https://doi.org/10.1002/bio.3622
  11. Synthesis of Schiff base ligand from N-substituted benzenesulfonamide and its complexes: Spectral, thermal, electrochemical behavior, fluorescence quenching, in vitro-biological and in-vitro cytotoxic vol.1199, pp.None, 2007, https://doi.org/10.1016/j.molstruc.2019.127029
  12. A fast-response turn-on quinoline-based fluorescent probe for selective and sensitive detection of zinc (II) and its application vol.160, pp.2, 2007, https://doi.org/10.1016/j.microc.2020.105776
  13. The complexation of levofloxacin hemihydrate with divalent metal ions in aqueous medium at variable temperatures: Combined UV-Visible spectroscopic and DFT studies vol.344, pp.None, 2021, https://doi.org/10.1016/j.molliq.2021.117916