N-Methyl Pseudoephedrine-mediated Asymmetric Syntheses of Dihydroquinoxalinones for the Preparation of Flavane Analogues

Yongtae Kim, Kyoung Hee Kang, Eui Ta Choi, Min Hee Lee, and Yong Sun Park ${ }^{\circ}$
Department of Chemistry and Bio Mfolecular Informatics Center, Konkuk Unwersity, Seoul 1+3-701, Korea
E-mail: parhyongakonkuk ackr
Received November 24, 2006

Key Words : Dihydroquinoxalinone. Chiral auxiliary, Asymmetric syntheses. Nucleophilic substitution. Flavonoids. Dynamic resolution
N-Methyl pseudoephedrine mediated asymmetric nucleophilic substitution of α-bromo esters has recently been developed in our laboratory for stereoselective preparation of α-amino. α-mercapto and α-hydroxy carboxylic acids. ${ }^{1,2}$ The successful results on dynamic resolution of N-methyl pseudoephedrine α-bromo esters prompt us to extend the methodology to asymmetric syntheses of 3 -substituted dihydroquinoxalinone derivatives. Since dihydroquinoxalinone core is of interest as an important pharmacophore in many biologically active compounds. ${ }^{3}$ substantial progress has been made toward the development of asymmetric synthetic methods for these compounds. ${ }^{4}$ Most strategies of previous reports are based on nucleophilic aromatic substitution of δ fluoronitrobenzene derivatives with optically pure amino acid derivatives and they are, consequently, limited by the diversity of available optically pure amino acids. Herein we report a novel asymmetric synthetic method for 3 -substituted dihydroquinoxalinones via dynamic resolution of N methyl pseudoephedrine α-bromo esters in nucleophilic substitution with various symmetric and non-symmetric 1,2phenylenediamine nucleophiles.

We have previously reported highly stereoselective reactions of (S, S) - N-methyl pseudoephedrine α-bromo esters with various nitrogen, sufur and oxygen nucleophiles and the primary pathway of the asymmetric induction is a dynanic thermodynamic resolution (DTR) in which the product ratio is determined by the ratio of two epimeric species that is established before the substitution. ${ }^{5}$ As shown in Table 1. the reactions of N-methyl pseudoephedrine α -bromo- α-ethyl ester ($\alpha R S$)-1 ($56: 44 \mathrm{dr}$) with sodium p methoxyphenoxide ($\mathrm{PMPO}^{-} \mathrm{Na}^{-}$) produced $(R)-2$ after methanolysis with $75: 25$ er. ${ }^{\text {la }}$ (entry 1) In contrast, when 1 was allowed to equilibrate before the addition of $\mathrm{PMPO}^{-} \mathrm{Na}^{-}$, the epimerization with $\mathrm{Et}_{3} \mathrm{~N}$ gave the thermodynamically equilibrated mixture ($89: 11 \mathrm{dr}$) of 1 and the following substitution provided (R)-2 with 90:10 er after methanolysis (entry 2). The dependency of product ratios on the dr of α-bromo ester implied that the epimerization of 1 is not fast with respect to their rate of substitution enough to get to thermodynamic equilibrium before the substitution. When we used 1,2phenylenediamine as a nucleophile for asymmetric syntheses of dilydroquinoxalinones. the slow substitution of the weak nucleophile was completed within 3 days ($>95 \%$ conver-

Table 1. Dynamic resolution of c-bromo ester 1

Entry	Dr of $\mathbf{1}^{a}$	Nucleophile	Yield (\%) $)^{b}$	Er^{c}
1	$56: 44$	PMPO- ${ }^{6}{ }^{+}$	$73(\mathbf{2})$	$75: 25$
2	$89: 11$	PMPO- Na^{+}	$77(\mathbf{2})$	$90: 10$
3	$60: 40$	1,2 -phenyllenediamine	$71(\mathbf{3})$	$91: 9$
4	$89: 11$	1,2 -phenylenediamine	$63(\mathbf{3})$	$98: 2$

${ }^{4}$ Drs were detemined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. ${ }^{k}$ Isolated yields. 'The ers were determined by CSP-HPLC.
sion) and spontaneous intramolecular amide formation of the second amino group furnished 3-ethyl dihydroquinoxalimone 3 in 71% yield with $91: 9$ er ($R: S)^{6}{ }^{6}$ (entry 3) Slower reaction of 1.2 -phenylenediamine compared to the reaction of $\mathrm{PMPO}^{-} \mathrm{Na}^{+}$could provide α-bromo ester 1 more time for epimerization before the substitution and the improved stereoselectivity. The stepwise epimerization-substitution protocol shown in entry 4 provided 3 in 63% yield with an increased er of $98: 2$. The significant enhancement of product ratio compared to thermodynamic ratio ($89: 11 \mathrm{dr}$) of 1 suggest an additional asymmetric induction by dynamic kinetic resolution. ${ }^{\text {It. }}{ }^{16}$

As shown in Table 2. preliminary studies on solvent effect showed that the substitutions in toluene and diethyl ether proceeded very slowly and gave lower stereoselectivities than in $\mathrm{CH}_{3} \mathrm{CN}$ (entries 1 and 2). In n-hexane. no detectable amount of product 3 was produced. The substitutions in

Table 2. Asymmetric syntheses of dihydroquinovalinone 3

"The epimerization was carried out for $20 \mathrm{~h}_{1} \mathrm{in} \mathrm{CH}_{2} \mathrm{CN}$. ${ }^{\text {E }}$ The substitutions were carried out for 3 days. 'Isolated yields. ${ }^{\text {a }}$ The ers were determined by CSP-HPLC (Chiralcel OJ-H).

THF. CHCl_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ proceeded at about the same rate and stereoselectivity as in $\mathrm{CH}_{3} \mathrm{CN}$ (entries 3.4 and 5). The results seem to indicate that a limiting polarity of the solvent medium exists. beyond which increasing polarity will result in neither improved reaction rate nor improved enantioselectivity: In the presence of tetrabuty lammonium iodide (TBAI), no significant differences in reaction rate and enantioselectivity were obser ed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CH}_{3} \mathrm{CN}$. as shown in entries 6 and 7.7

Next. we examined the scope of the epimerization-substitution protocol with various pheny lenediamine nucleophiles and α-bromo esters as shown in Table 3. Treatment of themodynamically equilibrated mixture 1 with 4.5 -di-methyl-1.2-phenylenediamine for 72 h at room temperature gave 3 -ethyl dihydroquinoxalinone 4 in 72% yield with $95^{\circ}: 5$

Table 3. Asymunetric syntheses of dihydroquinoxalinones 4-7
Entry
"All substitutions were carried out in $\mathrm{CH}_{3} \mathrm{CN}$ for 3 days. ${ }^{\text {i }}$ Isolated yields. 'The ers were determined by CSP-HPLC (Chiralcel OJ-H).

Table 4. Reqioselective asymmetric syntheses of dihydroquinoxalinones 8 and 9

		(eses	
Entry Nucleophile R	Products	Yield (\%) ${ }^{b}$ (major: minor ${ }^{\text {c }}$	$\operatorname{Er}(R: S)^{d}$ major: minor
1 Me		$\begin{gathered} 52 \\ (85: 15) \end{gathered}$	$\begin{aligned} & 94: 6 \\ & 87: 13 \end{aligned}$
2		$\begin{gathered} 66 \\ (87: 13) \end{gathered}$	$\begin{gathered} 99: 1, \\ 99: 1 \end{gathered}$

${ }^{\text {a }}$ All reactions were carried out in $\mathrm{CH}_{3} \mathrm{CN}$. "Isolated yields. 'The regioisomeric ratios were determined by ${ }^{\mathrm{l}} \mathrm{H}-\mathrm{NMR}$ and confinmed by HPLC. The ers were determined by CSP-HPLC (Chiralcel OJ-H for 8 and Chiralcel OB-H for 9).
er (entry 1). Furthermore, when the equilibrated mixture of α-bromo- α-methyl acetate with a themodynamic ratio of $98: 2$ was treated with pheny lenediamine. the reaction afforded the 3-methyl dihydroquinoxalinone 5 with higher stereoselectivity ($99: 1$ er. entry 2). As with 4.5 -dimethy 1-1.2phenylenediamine nucleophile, however. the reaction in $\mathrm{CH}_{3} \mathrm{CN}$ took place to afford dilydroquinoxalinone 6 in 67% yield with much lower stereoselectivity of $85: 15 \mathrm{er}$ (entry 3). This methodology is also efficient for the asymmetric preparation of 3-butyl dihydroquinoxalinone 7 with 99:1 er (entry 4).

As shown in Table 4. substitutions of α-bromo esters with non-symmetric phenylenediamine nucleophiles can produce two regioisomeric dihydroquinoxalinones. We initially examined 2.3-diaminotoluene as a nucleophile to understand the effect of ortho-substituent of 1.2-phenylenediamine. (entry 1) When the equilibrated mixture of α-bromo- α methyl ester was treated with the nucleophile. the reaction for 72 h at room temperature gave 3 -methyl-8-methyl dihydroquinoxalinone 8a as a major product with $94: 6 \mathrm{er}$ and 3-methyl-5-methyl dilydroquinoxalinone $\mathbf{8 b}$ as a minor product with $87: 13$ er. The regioselectivity of $85: 15$ suggests significantly different reactivities of two amino groups. The sterically less hindered amino group of the nucleophile is more reactive than amino group with ortho-methyl group. The regioisomer $8 \mathbf{a}$ was assigned as a major isomer by comparison to the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of authentic material individually prepared. ${ }^{8}$ Furthermore. we attempted the substitution reaction with 4 -fluoro-1,2-pheny lenediamine nucleophile and comparable regioselectivity was observed (entry 2). When
the equilibrated mixture of α-bromo- α-ethyl ester was treated with the nucleophile the reaction for 72 h at room temperature gave 3-ethyl-7-fluoro-dihydroquinoxalinone $9 \mathbf{a}$ as a major product with $99: 1$ er and 3-ethyl-6-fluoro-dihydroquinoxalinone 9 b as a minor product with $99: 1$ er. The amino group para to the fluorine reacted faster than the amino group meta to the fluorine. The regiochemistry of 9 was assigned by comparison to the ${ }^{3} \mathrm{H}$ NMR of authentic material reported previously ${ }^{3 a}$ The regiochemical aspects of the preliminary results showed that regioselectivity depends critically on the steric effect of ortho- and meta-substituents of 1.2-pheny lenediamine

In summary. we have developed N-methyl pseudoephedrine mediated asymmetric syntheses of dihydroquinoxalinone derivatives via dynamic resolution of α-bromo- α-alkyl esters. The process with mild condition is quite simple and does not rely on the availability of optically pure amino acid derivatives. Further applications of this methodology to the asymmetric syntheses of various kinds of heterocyclic compounds are underway

Experimental

N-Methyl pseudoehedrine α-bromo acetates were prepared by previously reported methods. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were acquired on Bruker $400\left(400 \mathrm{MHz}{ }^{1} \mathrm{H}, 100.6\right.$ $\mathrm{MHz}{ }^{13} \mathrm{C}$) spectrometer using chloroform- d or $\mathrm{DMSO}-d_{6}$ as the internal standard. Analytical chiral stationary phase HPLC was performed on pump system coupled to absorbance detector (215 nm). Chiralcel OJ-H column ($25 \mathrm{~cm} \times$ 4.6 mm i.d.) and Chiralcel $\mathrm{OB}-\mathrm{H}$ column ($25 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ i.d.) with isopropanol/hexane mobile phase were used to determine enantiomeric ratios. The purities ($>95 \%$) of products were estimated by NMR.
General procedure for the preparation of 3-9. To a solution of N-methyl pseudoephedrine α-bromo ester in $\mathrm{CH}_{3} \mathrm{CN}(c a .0 .1 \mathrm{M})$ at room temperature were added $\mathrm{Et}_{3} \mathrm{~N}$ (1.0 equiv). The resulting reaction mixture was stirred at room temperature for 20 h , and then a 1.2 -pheny lenediamine (1.5 equiv) was added. After the resulting reaction mixture was stirred at room temperature for $72-96 \mathrm{~h}$. the mixture was quenched with $\mathrm{aq} .5 \%-\mathrm{HCl}$ solution. The resulting mixture was extracted with methylene chloride and the combined extracts were washed with brine. The solvent was removed under reduced pressure and the crude material was purified by column chromatography to give a 3 -substituted dihydroquinovalinone
3-Ethyl-3,4-dihydro-2(1H)-quinoxalinone (3). A pale yellow oil was obtained in 63% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$. 400 MHz) $9.11(\mathrm{br}, 1 \mathrm{H}) .6 .90-6.66(\mathrm{~m}, 5 \mathrm{H}) .3 .98$ (br. IH). $3.86(\mathrm{~m} .1 \mathrm{H}) .1 .83(\mathrm{~m} .2 \mathrm{H}) .1 .04(\mathrm{t} . J=7.4 \mathrm{~Hz} .3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3} .100 \mathrm{MHz}\right) 169.6,133.5,125.7 .124 .2$. 119.6. 115.8. 114.4. 58.0, 25.5. 10.0. Chiral HPLC: $98: 2$ er, $t_{R}(R)-$ major enantiomer, $30.3 \mathrm{~min}: t_{R}(S)$-minor enantiomer. 31.9 min: (Chiralcel OJ-H colunn; 10\% 2-propanol in hexane; $0.5 \mathrm{~mL} / \mathrm{min}$).
6,7-Dimethyl-3-ethyl-3,4-dihydro-2(1H)-quinoxalinone
(4). A pale yellow oil was obtained in 72% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 8.44$ (br. 1 H). 6.51 (s. 1 H), 6.49 (s. 1 H), $3.80(\mathrm{~m} .2 \mathrm{H}) .2 .15(\mathrm{~s} .6 \mathrm{H}) .1 .79(\mathrm{~m} .2 \mathrm{H}) .1 .02(\mathrm{t} . J=7.4 \mathrm{~Hz}$. $3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) 169.4,132.3$. 131.1, 127.8. 123.5. 116.9. 116.1, 58.2. 25.2. 19.7. 19.3. 10.1. Chiral HPLC: 95:5 er. $t_{R}(R)$-major enantiomer, $24.1 \mathrm{~min}: t_{R}(S)$ minor enantiomer. 33.2 min (Chiralcel OJ-H column: 15% 2-propanol in hexane: $0.5 \mathrm{~mL} / \mathrm{min}$).

3-Methyl-3,4-dihydro-2(1H)-quinoxalinone (5). A white solid was obtained in 68% yield. m.p. $150-151^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 8.81(\mathrm{br}, 1 \mathrm{H}), 6.91-6.67(\mathrm{~m} .4 \mathrm{H}), 4.02(\mathrm{q}$, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$). 3.85 (br. 1 H). 1.46 (d. $J=6.6 \mathrm{~Hz} .3 \mathrm{H}$): ${ }^{13} \mathrm{C}$ NMR (CDCl 3.100 MHz) 170.1. 133.9, 126.1. 124.2. 120.0, 115.9. 114.5.52.3. 18.3. The spectral data of 5 were identical to those of the authentic material reported previously. ${ }^{s_{4}}$ Chiral HPLC: 99:1 er. $t_{R}(R)$-major enantiomer, 36.9 min ; t_{R} (S)-minor enantiomer, 39.0 min ; (Chiralcel OJ-H columm; 10% 2-propanol in hexane: $0.5 \mathrm{~mL} / \mathrm{min}$).

6,7-Dimethyl-3-methyl-3,4-dihydro-2($I H$)-quinoxalinone (6). A white solid was obtained in 67\% yield. m.p. 195-196 ${ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6,} 400 \mathrm{MHz}\right) 10.02(\mathrm{br}, 1 \mathrm{H}), 6.51(\mathrm{~s}$. 1H). $6.48(\mathrm{~s} .1 \mathrm{H}) .5 .69(\mathrm{br}, 1 \mathrm{H}) .4 .11$ (br. 1 H). $3.68(\mathrm{~m}, 1 \mathrm{H})$. 2.06 (s. 3H), 2.05 (s. 3 H), 1.23 (d. $J=6.6 \mathrm{~Hz} .3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR (DMSO-d6, 100 MHz) 169.3. 133.1. 130.6. 125.9, 125.0, $116.7,115.8 .52 .0 .19 .8,19.5,18.1$. The spectral data of 6 were identical to those of the authentic material reported previously ${ }^{\text {. }{ }^{\text {b }}}$ Chiral HPLC: $85: 15$ er. $t_{R}(R)$-major enantiomer, $23.3 \mathrm{~min}: t_{R}(S)$-minor enantiomer. 21.6 min ; (Chiralcel OJH column: 20% 2-propanol in hexane: $0.5 \mathrm{~mL} / \mathrm{min}$).

3-Butyl-3,4-dihydro-2(1H)-quinoxalinone (7). A colorless oil was obtained in 76% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz) 8.84 (br, 1H), 6.90-6.66 (m. 4 H). 3.95 (br. 1 H). 3.90 (m. 1H). $1.80(\mathrm{~m} .2 \mathrm{H}) .1 .37(\mathrm{~m}, 4 \mathrm{H}) .0 .91(\mathrm{t} . J=7.0 \mathrm{~Hz}$. $3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ 169.6, 133.4. 125.7. 124.2. 119.7. 115.8. 114.5, 56.8, 32.0. 27.9. 22.9. 14.4. The spectral data of 7 were identical to those of the authentic material reported previously. ${ }^{96}$ Chiral HPLC: 99:1 er, $t_{R}(R)$ major enantiomer. $21.5 \mathrm{~min}: t_{R}(S)$-minor enantiomer, 25.4 min: (Chiralcel OJ-H column: 10\% 2-propanol in hexane: $0.5 \mathrm{~mL} / \mathrm{min}$).

3-Methyl-8(5)-methyl-3,4-dihydro-2(1H)-quinoxalinone (8) The $85: 15$ mixture of $\mathbf{8 a}$ and $\mathbf{8 b}$ was obtained as a white solid in 52% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .400 \mathrm{MHz}\right) 8 \mathrm{a} .8 .11$ (br, $1 \mathrm{H}), 6.80-6.56(\mathrm{~m} .3 \mathrm{H}), 3.98$ (q. $J=6.6 \mathrm{~Hz} . \mathrm{IH}) .3 .83$ (br, $1 \mathrm{H}) .2 .25(\mathrm{~s} .3 \mathrm{H}) .1 .46(\mathrm{~d} . J=7.2 \mathrm{~Hz} .3 \mathrm{H}): 8 \mathrm{~b} .8 .69$ (br. 1 H). $6.80-6.56(\mathrm{~m} .3 \mathrm{H}), 4.04(\mathrm{q}, J=6.6 \mathrm{~Hz} .1 \mathrm{H}), 3.71(\mathrm{br} . \mathrm{lH})$. 2.17 (s. 3 H). $1.49(\mathrm{~d} . J=6.8 \mathrm{~Hz} .3 \mathrm{H}){ }^{13}{ }^{13} \mathrm{CNMR}^{\left(\mathrm{CDCl}_{3} .100\right.}$ $\mathrm{MHz}) 8 \mathrm{a} .169 .5,132.0,125.7$. 125.5. 122.4. 119.4, 113.8 , 52.3. 18.5. 17.1. Chiral HPLC: 8a. 94:6 er. $t_{R}(R)$-major enantiomer. 65.0 min ; $t_{R}(S)$-minor enantiomer. 69.9 min : 8b, 87:13 er. $t_{R}(R)$-major enantiomer, $74.2 \mathrm{~min} t_{R}(S)$-minor enantiomer. 54.6 min (Chiralcel OJ-H colunm; 5% 2-propanol in hexane: $0.5 \mathrm{~mL} / \mathrm{min}$).

3-Ethyl-6(7)-fluoro-3,4-dihydro-2(1H)-quinoxalinone (9). The $87: 13$ mixture of 9 a and 9 b was obtained as a brown oil in 66% yield. ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$) 9 a , $10.26($ br. 1 H$) .6 .70-6.51(\mathrm{~m} .3 \mathrm{H}) .5 .95(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{~m}$,
$1 \mathrm{H}), 1.61(\mathrm{~m}, 2 \mathrm{H}) .0 .92(\mathrm{~m} .3 \mathrm{H}) ; 9 \mathrm{~b}, 10.20(\mathrm{br}, \mathrm{H}), 6.70-$ $6.51(\mathrm{~m} .3 \mathrm{H}) .6 .30(\mathrm{~s} .1 \mathrm{H}) .3 .75(\mathrm{~m} .1 \mathrm{H}) .1 .61(\mathrm{~m} .2 \mathrm{H}) .0 .92$ (m. 3 H). The spectral data of $9 \mathbf{a}$ and 9 b were identical to those of the authentic material reported previously. ${ }^{3 a}$ Chiral HPLC: 9a. 99:1 er $t_{R}(R)$-major enantiomer. $29.0 \mathrm{~min} ; t_{R}(S)$ minor enantiomer. 40.5 min : 9b, 99:1 er. $t_{R}(R)$-major enantiomer. 36.2 min : $t_{R}(S)$-minor enantiomer. 32.1 min (Chiralcel OB-H column: 10% 2-propanol in hexane: $0.5 \mathrm{~mL} / \mathrm{min}$)

Acknowledgement. This work was supported by a grant from Korea Research Foundation (KRF-2006-005-J03402).

References and Notes

1. (a) Nam, J.; Lee, S.-k.' Park, Y. S. Tetrahedron 2003. 59. 2397 . (b) Lee, S.-k.; Nam, J.: Park. Y. S. Symett 2002. 790. (c) Nam. I.: Lee. S.-k.: Kim. K. Y.: Park. Y. S. Tetrahedron Lett. 2002. 42.8253.
2. Both (S, S) and (R, R)-iv-metlyl pseudoephedrine are commercially available and also can be easily prepared by N -methylation of pseudoephedrine with formaldehyde and formic acid.
3. (a) Mahanev. P. E.: Webb, M. B.: Ye F.: Sabatucei. I. P.: Steffan. R. I.: Chadwick. C. C.: Hamish, D. C.: Trybulski. E. I. Bioorg. Med. Chem. 2006. 1H. 3455 . (b) Ha. S. N.: Hev, P. J.: Ransom, R. W.: Harrell. M.: Murphy. K. L.: Chang. R.: Chen. T.-B.: Su. D.-S.: Markowitz. M. K.: Bock. M. G.: Freidinger. R. M.: Hess. F. J. Biochem. Biophus. Res. Commin. 2005. 331. 159. (c) Gupta. D: Ghosh. N. N.: Chandra. R. Bioorg Med Chem. Lett. 2005. I5. 1019. (d) Su. D.-S.; Markowitz, M. K.; Dipardo, R. M.; Murphys K. L.; Harrell, C. M.: O'Malley. S. S.; Ransom. R. W.; Chang. R. S. L.: Ha. S.: Hess, F. J.: Pettibone D. J.: Mason. G. S.: Boyce. S.: Freidinger. R. M.: Bock. M. G. J. Am. Chem. Soc. 2003.125. 7516.
4. (a) Tung. C.-L.: Sun. C.-M. Tetrohedron Lett. 2004. 45. 1159. (b) Jamieson. C.: Congreve, M. S.: Emiabata-Smith, D. F.: Lev, S. V.: Scicinski. J. I. Org. Process. Res. Dev: 2002, 6. 823. (c) Holland. R. J.: Hardeastle, I. R.: Jarman. M. Tetrahectron Lett. 2002, 13.
5. (d) Laborde, E.: Peterson. B. T.: Robinson. L. J. Comb Chent. 2001. 3. 572.
6. For reviews on dynamic thermodynamic resolution. see: (a) Kimn. Y.: Shin. E.-k.: Beak. P.: Park. Y. S. Smhesis 2006. 3805. (b) Park. Y. S.; Yum, E. K.; Basu, A.: Beak. P. Org. Lett. 2006, 8. 2667. (c) Coldham, I:; Dufour, S.; Haxell, T. F. N.; Howard, S.; Vennall. G. P. Angew. Chem. Int. Ed. 2002. 41. 3887 . (d) Clayden. J.: Mitjans. D.: Youssef. L. H. J. An. Chen. Soc. 2002. 124. 5266. (e) Nakamua. S.: Nakagawa. R.: Watanabe. Y.: Toru. I. J. Am. Chen. Soc. 2000. 122. 11340.
6 . In references la-e. we have established that (R)-products were provided in the substitution of λ-methyl pseudoephedrine $\alpha-$ bromo esters with various nucleophiles. The absolute configurations of dihydroquinoxalinones $3-9$ are provisionally assigned by analogy
7. For revieus on TBAI (or TBAB) promoted epimerization of α halo esters or amides, see: (a) Kim, H. J.; Kim, Y.; Choi. E. T.; Lee. M. H.; No. E. S.; Park, Y. S. Tebrahedron 2006. 62. 6303. (b) Shin, E.-k., Chang, J.-y.: Kim. H. J.: Kim, Y.: Park, Y. S. Bull. Korean Chent. Soc. 2006. 27. 447. (c) Chang. J.-y:: Shin. E.-k:: Kim. H. J.: Kim. Y:: Park. Y. S. Bull. Korean Chen. Soc. 2005.26. 989. (d) Treweeke. N. R.: Hitchcock. P. B.: Pardoe. D. A. Caddick. S. Chem. Commm. 2005, 1868. (e) Chang, J.-y,; Shin. E.-k.; Kim. H. J.; Kim, Y.: Park, Y. S. Tetrahedron $2005.61,2743$. (f) Valenrod, Y.; Myung, J; Ben, R. N. Tetrahedron Lett. 2004. 45. 2545. (g) Devine. P. N.: Foster. B. S.: Grabowski. E. J. J.: Reider. P. T. Heterocycles 2002. 58. 119. (h) Caddick. S.: Afonso. C. A. M.: Candeias. S. X.: Hitchcock. P. B.: Tenkins. K.: Mutagh. L.: Pardoe, D.; Santos. A. G.; Treweeke, N. R.; Weaving. R. Tetrahedon 2001. 57. 6589. (i) Ben. R. N.; Durst. T. J. Org Chem. 1999, 64. 7700.
8. Kim. Y.; Lee, M. H.: Choi. E. T.: No. E. S.; Park, Y. S. Heterocucles 2007. 71. 5.
9. (a) Li. Y.-Z.: Townshend. A. Andi. Chim. Acta 1997. 340.159 . (b) Li. X.: Wang. D.: Wu. J.: Xu. W. Heterocycles 2005. 65. 2741. (c) Kim. K. S.: Qian. L.; Bird. J. E.: Dickinson, K. E. J.; Moreland. S.; Schaeffer, T. R.; Waldron, T. L.; Delaney, C. L.; Weller. H. N.; Miller. A. V..$/$ Aled. Chem. 1993, 36. 2335.
