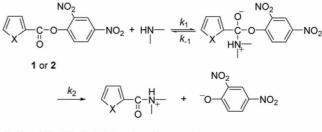
Aminolyses of 2,4-Dinitrophenyl 2-Furoate and Benzoate: Effect of Nonleaving Group on Reactivity and Mechanism

Ik-Hwan Um," Sun-Mee Chun, and Kalsoom Akhtar

Division of Nano Sciences and Department of Chemistry, Ewha Womans University, Seoul 120-750, Korea E-mail: ihum@ewha.ac.kr Received November 21, 2006

Second-order rate constants (k_N) have been determined spectrophotometrically for reactions of 2.4dintrophenyl 2-furoate (**2**) with a series of alicyclic secondary amines in 80 mol % H₂O/20 mol % dimethyl sulfoxide (DMSO) at 25.0 °C. The furoate **2** is more reactive than 2.4-dintrophenyl benzoate (**1**) toward all the amines studied. The higher acidity of 2-furoic acid ($pK_a = 3.16$) compared with benzoic acid ($pK_a = 4.20$) has been suggested to be responsible for the reactivity order, at least in part. The Bronsted-type plots for the reactions of **1** and **2** are curved downwardly, indicating that the aminolyses of both **1** and **2** proceed through a zwitterionic tetrahedral intermediate ($T^=$) with a change in the rate-determining step on changing the amine basicity. Dissection of the k_N values into their microscopic rate constants has revealed that the pK_a^{0} and k_2/k_{-1} ratios for the reactions of **1** and **2** are identical, indicating that the nature of the nonleaving group (*i.e.*, benzoyl and 2-furoyl) does not affect the reaction mechanism. The k_1 values have been found to be larger for the reactions of **2** than for those of **1**, which is fully responsible for the fact that the former is more reactive than the latter.

Key Words : Aminolysis, Nonleaving group, Yukawa-Tsuno plot, Rate-determining step, Reaction mechanism


Introduction

Aminolysis of esters with a good leaving group has often resulted in a curved Bronsted-type plot. *i.e.*, a large slope ($\beta_2 = 0.8 \pm 0.2$) for reactions with weakly basic amines but a small one ($\beta_1 = 0.3 \pm 0.1$) for reactions with strongly basic amines.¹⁻¹¹ Accordingly, aminolyses of esters have generally been understood to proceed through a zwitterionic tetrahedral intermediate (T[±]) with a change in the rate-determining step (RDS).¹⁻¹¹

It has been reported that the RDS changes at pK_a° (*i.e.*, the curvature center of the curved Bronsted-type plot) from breakdown of T^{\pm} to its formation as the attacking amine becomes more basic than the leaving group by 4 to 5 pK_a units.⁶⁻¹¹ Gresser and Jencks have found that the pK_a° value increases as the substituent in the nonleaving group becomes a stronger electron withdrawing group (EWG) for quinuclidinolysis of diaryl carbonates in water.⁶ This result has been explained through the argument that an EWG in the nonleaving group favors the departure of amine from T^{\pm} (k_{-1}) than that of the leaving group (k_2) as the electron withdrawing ability of the substituent in the nonleaving group increases.⁶ Castro et al. have obtained a similar result for pyridinolysis of 2,4-dinitrophenyl X-substituted benzoates (*i.e.*, $pK_a^{\circ} = 9.5$ when X = H but $pK_a^{\circ} > 9.5$ when X = Cl. CN, or NO_2 ⁷ and S-2.4-dinitrophenyl X-substituted thiobenzoates (*i.e.*, pK_a° increases from 8.5 to 8.9 and 9.9 as substituent X changes from 4-Me to H and 4-NO₂, respectively)⁸ in aqueous ethanol. Thus, it has been concluded that an EWG in the nonleaving group increases the pK_a° value by increasing the k_2/k_{-1} ratio.⁶

In contrast, we have recently shown that the pK_a° value and the k_2/k_{-1} ratio are not influenced by the electronic nature of the substituent X in the nonleaving group for aminolyses of 2.4-dinitrophenyl X-substituted benzoates and benzenesulfonates.⁹⁻¹¹ We have argued that an electron donating group (EDG) in the nonleaving group would increase k_1 and k_{-1} , while an EWG would decrease k_2 and k_{-1} , since both the leaving group and amine depart from T⁼ with the bonding electrons. Thus, it has been concluded that the k_2/k_{-1} ratio is independent of the electronic nature of the substituent X in the nonleaving group.

We have extended our kinetic study to reactions of 2.4dinitrophenyl 2-furoate (2) with a series of alicyclic secondary amines as shown in Scheme 1. The kinetic data in the current study have been compared with those for the corresponding reactions of 2.4-dinitrophenyl benzoate (1) to

1 ; X = HC=CH (2,4-dinitrophenyl bezoate) **2** ; X = O (2,4-dinitrophenyl 2-furoate)

$$HN - = HN Z ; R = H \text{ or } CH_3; Z = CH_2, NH, O, NCHO, NH_2^+ R$$

Scheme 1

investigate the effect of changing the nonleaving group from benzoyl to 2-furoyl on reactivity and reaction mechanism, particularly on pK_a° and k_2/k_{-1} ratio.

Results and Discussion

Reactions of 2 with all the amines studied proceeded with quantitative liberation of 2.4-dinitrophenoxide ion. The reactions were followed by monitoring the appearance of 2,4-dinitrophenoxide ion at 400 nm. Kinetic study was performed under pseudo-first-order conditions: the amine concentration was always in excess over that of the substrate 2. All reactions obeyed first-order kinetics over 90% of the total reaction. Pseudo-first-order rate constants (k_{obsd}) were determined from the equation, $\ln(A_{\infty} - A_t) = -k_{obsd}t + C$. The plots of k_{obsd} vs. the amine concentration were linear passing through the origin, indicating that general base catalysis by a second amine molecule is absent and the contribution of OH^- ion from the hydrolysis of amines to k_{obsd} is negligible. Thus, the rate equation can be expressed as eq. (1). The second-order rate constants (k_N) were determined from the slope of these linear plots. Generally five different amine concentrations were used to determine k_N values. It is estimated from replicate runs that the uncertainty in the rate constants is less than 3%. The $k_{\rm N}$ values determined in this way are summarized in Table 1.

$$rate = k_{\rm N}[2][amine] \tag{1}$$

Effect of Nonleaving Group on Reactivity. As shown in Table 1, the k_N value for the reaction of 2 decreases as the basicity of amines decreases. *i.e.*, it decreases from 427 $M^{-1}s^{-1}$ to 43.5 and 1.47 $M^{-1}s^{-1}$ as the p K_a of amines decreases from 11.02 to 8.65 and 5.95, respectively. A similar result is shown for the corresponding reactions of 1. However, the furoate 2 is more reactive than the benzoate 1 for all the amines studied.

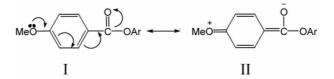
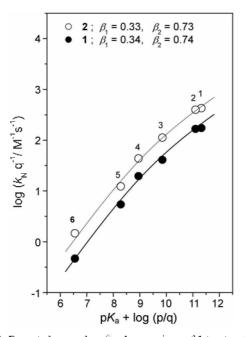

We have recently shown that the effect of substituent in the nonleaving group on reactivity is significant for nucleophilic substitution reactions of aryl X-substituted benzoates and benzensulfonates with primary and secondary amines^{9,11} as well as with anionic nucleophiles such as OH⁻. CN⁻, and $N_3^{-,12}$ In all cases, the reactivity of these esters increased as

Table 1. Summary of Second-order Rate Constants $(k_N, M^{-1}s^{-1})$ for the Reactions of 2,4-Dinitrophenyl Benzoate (1) and 2-Furoate (2) with Alicyclic Secondary Amines in 80 mol % H₂O/20 mol % DMSO at 25.0 \pm 0.1 °C

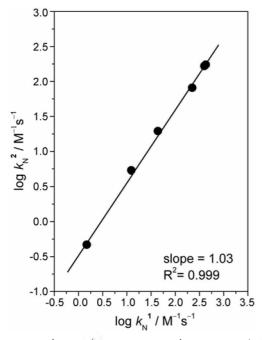
No.	Amines	рК₂	$k_{\rm N}/{ m M}^{-1}{ m s}^{-1}$	
			1	2
1	piperidine	11.02	174^{a}	427
2	3-methyl piperidine	10.80	167^{a}	402
3	piperazine	9.85	82.1^{a}	224
4	morpholine	8.65	19.6°	43.5
5	1-formyl piperazine	7.98	5.43°	12.3
6	piperazinium ion	5.95	0.467^{a}	1.47

"Data taken from ref. 9b.

the substituent X in the benzoyl or the sulfonyl moiety becomes a stronger EWG⁹⁻¹² We have found that the Yukawa-Tsuno plots for these reactions are linear with r values ranging from 0.4 to $1.6^{.9\cdot12}$ Since the r value in the Yukawa-Tsuno plot represents a relative extent of resonance contribution between the electron donating substituent (*e.g.*, 4-MeO) and the reaction center (*e.g.*, the carbonyl or sulfonyl group).^{12,14} the ground state has been suggested to be stabilized through resonance as illustrated by resonance structures I \leftrightarrow II.



The effect of delocalizability of ring electrons to the carbonyl group (*i.e.*, resonance structures III \leftrightarrow IV, where R = benzoyl, 2-furoyl, and 2-thiophenecarboxyl) has also been studied theoretically.¹⁵ Lee et al. have reported that the delocalizability of ring electrons decreases in the order 2furovl > 2-thiophenecarboxyl > benzovl on the basis of the ab initio calculations at the MP2/6-31G*//MP2/6-31G* level.¹⁵ Furthermore, the natural bond orbital (NBO) positive charge on the carbonyl carbon has been computed to be in the reverse order, *i.e.*, 2-furoyl $(0.328) \le 2$ -thiophenecarboxvl (0.351) < benzovl (0.376),¹⁵ indicating that the benzoate 1 is more electrophilic than the furoate 2. Accordingly, one might expect that 1 is more reactive than 2. However, Table 1 shows that 2 is more reactive than 1 toward all the amines studied. Thus, one can suggest that the delocalizability of ring electron (or the NBO positive charge) cannot determine the reactivity of 1 and 2 toward the amines in the current study.



2-Furoic acid ($pK_a = 3.16$) is 1.04 pK_a units more acidic than benzoic acid ($pK_a = 4.20$).¹⁶ Thus, one might suggest that the high acidity of 2-furoic acid is responsible, at least in part. for the fact that **2** is more reactive than **1**. This argument is consistent with our recent reports that an acid strengthening substituent X in the benzoyl or benzenesulfonyl moiety increases the reactivity of aryl X-substituted benzoates or benzenesulfonates toward various nucleophiles.⁵⁻¹²

Effect of Nonleaving Group on Reaction Mechanism. In Figure 1 is demonstrated the effect of amine basicity on reactivity. The Bronsted-type plots exhibit downward curvature for reactions of 1 and 2. Such a nonlinear Bronsted-type plot has often been found for aminolysis of esters with a good leaving group and suggested as evidence of a stepwise mechanism with a change in the RDS. In fact, we have

Figure 1. Bronsted-type plots for the reactions of $1 (\bullet)$ and $2 (\bigcirc)$ with alicyclic secondary amines in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C. The identity of points is given in Table 1.

Figure 2. Plot of log k_N for the reactions of 1 versus log k_N for the reactions of 2 in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

recently reported that the reactions of 1 with all the amines employed in this study proceed through T⁼ with a change in the RDS from the breakdown of T[±] to its formation as the amine becomes more basic than the leaving 2,4-dinitrophenoxide ion by *ca*. 5 pK_a units.^{5a,9a} Thus, one can suggest that the aminolysis of **2** proceeds also through T[±] on the basis of the nonlinear Bronsted-type plot as shown in Figure 1. This argument can be supported from the linear correlation between the logarithmic second-order rate constants for the reactions of 1 and 2. As shown in Figure 2, the log k_N for the reactions of 2 exhibits a good linear correlation with that for the corresponding reactions of 1 with a slope close to unity.

The nonlinear Bronsted-type plot shown in Figure 1 for the aminolysis of **2** has been analyzed using a semiempirical equation (eq 2)^{6,17} on the basis of the proposed mechanism shown in Scheme 1. The parameters β_1 and β_2 represent the slope of the curved Bronsted plots in Figure 1 for the reactions with strongly basic and weakly basic amines, respectively. Here k_{N}° refers to the k_{N} value at pK_{a}° where $k_{2}/k_{-1} = 1$. The parameters determined from the fitting of eq (2) to the experimental points are $\beta_1 = 0.33$, $\beta_2 = 0.73$, and $pK_{a}^{\circ} = 9.1$. Although the β_1 and β_2 values are slightly smaller for the reactions of **2** than for those of 1 (*i.e.*, $\beta_1 = 0.34$ and $\beta_2 =$ 0.74), the pK_{a}° value is the same, *i.e.*, $pK_{a}^{\circ} = 9.1$ for both reactions of **1** and **2**. This result is consistent with our previous conclusion that the nature of the nonleaving group does not influence the pK_{a}° value.^{5,9-11}

$$\log (k_{\rm N}/k_{\rm N}^\circ) = \beta_2 (pK_{\rm a} - pK_{\rm a}^\circ) - \log (1 + \alpha)/2$$

where $\log \alpha = (\beta_2 - \beta_1)(pK_{\rm a} - pK_{\rm a}^\circ)$ (2)

The k_N values for the reactions of **2** have been dissected into their microscopic rate constants to obtain further information about the reaction mechanism. The apparent secondorder rate constant k_N can be expressed as eq (3) by applying the steady-state conditions to the intermediate on the basis of the proposed mechanism.

$$k_{\rm N} = k_1 k_2 / (k_{-1} + k_2) \tag{3}$$

The k_2/k_{-1} ratios associated with the aminolysis of **2** have been determined using eqs (4)-(9). Eq (3) can be simplified to eq (4) or (5). Then, β_1 and β_2 can be expressed as eqs (6) and (7), respectively.

$$k_{\rm N} = k_1 k_2 / k_{-1}$$
, when $k_2 << k_{-1}$ (4)

$$k_{\rm N} = k_1$$
, when $k_2 >> k_{-1}$ (5)

$$\beta_{\rm l} = d(\log k_{\rm l}) / d(pK_{\rm a}) \tag{6}$$

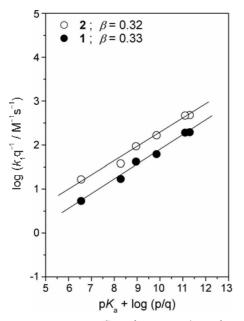
$$\beta_2 = d(\log k_1 k_2 / k_{-1}) / d(pK_a) = \beta_1 + d(\log k_2 / k_{-1}) / d(pK_a)$$
(7)

Eq (7) can be rearranged as eq (8). Integral of eq (8) from pK_a° results in eq (9). Since $k_2 = k_{-1}$ at pK_a° , the term $(\log k_2 / k_{-1})_{pKa^{\circ}}$ is zero. Therefore, one can calculate the k_2/k_{-1} ratios for the aminolysis of **2** from eq (9) using $pK_a^{\circ} = 9.1$, $\beta_1 = 0.33$, and $\beta_2 = 0.73$.

$$\beta_2 - \beta_1 = d(\log k_2 / k_{-1}) / d(pK_a)$$
(8)

$$(\log k_2 / k_{-1})_{pKa} = (\beta_2 - \beta_1)(pK_a - pK_a^{\circ})$$
(9)

The k_1 values have been determined from eq (10) using the k_N values in Table 1 and the k_2/k_{-1} ratios calculated above. The k_2/k_{-1} ratios and k_1 values are summarized in Table 2.


$$k_{\rm N} = k_1 k_2 / (k_{-1} + k_2)$$

= $k_1 / (k_{-1} / k_2 + 1)$ (10)

The k_2 value has been suggested to be independent of the

Table 2. Summary of Microscopic Rate Constants k_1 and k_2/k_{-1} Ratios for the Reactions of **2** (and **1** in parentheses) with Alicyclic Secondary Amines in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C

No.	Amines	pK_a	$k_{1}/M^{-1}s^{-1}$	k_2/k_{-1}
1	piperidine	11.02	482 (197) ^a	7.73 (7.73) ^a
2	3-methyl piperidine	10.80	466 (193) ^a	$6.32(6.32)^a$
3	piperazine	9.85	336 (123) ^e	$2.00(2.00)^{a}$
4	morpholine	8.65	93.4 (42.1)°	$0.872 (0.872)^{a}$
5	1-formyl piperazine	7.98	38.5 (17.0)°	$0.470(0.470)^{a}$
6	piperazinium ion	5.95	16.8 (5.36) ^a	$0.096 (0.096)^a$

"Data in the parentheses are for the reactions of 1 taken from ref. 9b.

Figure 3. Bronsted-type plots for k_1 for the reactions of **1** (•) and **2** (•: •) with alicyclic secondary amines in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C.

basicity of amines, while k_{-1} would decrease as the amine basicity increases.⁶⁻¹¹ Accordingly, one might expect that the k_2/k_{-1} ratio would increase as the amine basicity increases. Table 2 shows that the k_2/k_{-1} ratio increases as the amine basicity increases, which is consistent with the expectation. Table 2 also shows that the k_2/k_{-1} ratios for the reactions of **2** are the same as those for the reactions of **1**. This result supports our previous conclusion that the electronic nature of substituent X in the benzoyl or benzenesulfonyl moiety does not affect the k_2/k_{-1} ratio.^{9,11}

As shown in Table 2, k_1 increases with increasing amine basicity for both reactions of 1 and 2. The effect of amine basicity on k_1 is illustrated in Figure 3. Both Bronsted-type plots are linear with almost the same slope. It is noted that the k_1 value is larger for the reactions of 2 than for those of 1 for a given amine, which is fully responsible for the fact that the former exhibits higher reactivity than the latter.

Conclusions

The current study has allowed us the following conclu-

sions: (1) The furoate 2 is more reactive than the benzoate 1. The higher acidity of 2-furoic acid compared with benzoic acid is responsible, at least in part, for the higher reactivity of 2. (ii) The aminolysis of 2 has been suggested to proceed through T^{\pm} with a change in the RDS on the basis of the nonlinear Bronsted-type plot. (iii) The pK_a° and k_2/k_{-1} ratios for the reactions of 1 and 2 are identical, indicating that the nature of the nonleaving group (*i.e.*, benzoyl and 2-furoyl) does not affect the reaction mechanism. (iv) The k_1 value is larger for the reactions of 2 than for those of 1, which is fully responsible for the fact that the former is more reactive than the latter.

Experimental Section

Materials. Substrate **2** was readily prepared from the reaction of 2.4-dinitrophenol and 2-furoyl chloride in the presence of triethylamine in anhydrous ether. The purity was confirmed by its melting point and ¹H NMR spectrum. Amines and other chemicals were of the highest quality available and were generally recrystallized or distilled before use. Due to the low solubility of **2** in pure H₂O. aqueous DMSO was used as the reaction medium (*i.e.*, 20 mol % DMSO/80 mol % H₂O). Doubly glass distilled water was further boiled and cooled under nitrogen just before use.

Kinetics. The kinetic studies were performed at 25.0 ± 0.1 °C with a UV-Vis spectrophotometer equipped with a constant temperature circulating bath for slow reactions (*e.g.*, $t_{1/2} \ge 10$ s) or with a stopped-flow spectrophotometer for fast reactions (*e.g.*, $t_{1/2} \le 10$ s). The reactions were followed by monitoring the appearance of 2.4-dinitrophenoxide ion at 400 nm. All the reactions were carried out under pseudo-first-order conditions in which the amine concentration was at least 20 times greater than that of the substrate.

Typically, reaction was initiated by adding 5 μ L of 0.02 M of a substrate solution in MeCN by a 10 μ L syringe into a 10 mm UV cell containing 2.50 mL of the reaction medium and the amine. The amine stock solution of *ca.* 0.2 M was prepared in a 25.0 mL volumetric flask under nitrogen by adding 2 equiv of amine to 1 equiv of standardized HCl solution in order to obtain a self-buffered solution. All the transfers of reaction solutions were carried out by means of gas-tight syringes.

Products Analysis. The amount of 2.4-dinitrophenoxide ion was determined quantitatively by comparison of the UV-Vis spectra after the completion of the reactions with those of the authentic samples under the same reaction conditions.

Acknowledgment. This work was supported by a grant from KOSEF of Korea (R01-2004-000-10279-0). K. Akhtar is also grateful to Ewha Womans University for International Exchange Scholarship.

References

 (a) Jeneks, W. P. Chem. Rev. 1985, 85, 511-527. (b) Castro, E. A. Chem. Rev. 1999, 99, 3505-3524. (c) Page, M. I.; Williams, A.

Ik-Hwan Um et al.

Organic and Bio-organic Mechanisms; Longman: Harlow, U.K., 1997; Chapter 7.

- (a) Castro, E. A.; Aliaga, M.; Gazitua, M.; Santos, J. G. *Tetrahedron* 2006, 62, 4863-4869. (b) Castro, E. A.; Campodonico, P. R.; Contreras, R.; Fuentealba, P.; Santos, J. G.; Leis, J. R.; Garcia-Rio, L.; Saez, J. A.; Domingo, L. R. *Tetrahedron* 2006, 62, 2555-2562. (c) Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005, 70, 8088-8092. (d) Campodonico, P. R.; Fuentealba, P.; Castro, E. A.; Santos, J. G.; Contreras, R. J. Org. Chem. 2005, 70, 1754-1760. (e) Castro, E. A.; Aliaga, M.; Evangelisti, S.; Santos, J. G. J. Org. Chem. 2004, 69, 2411-2416.
- (a) Sung, D. D.; Koo, I. S.; Yang, K. Y.; Lee, I. Chem. Phys. Lett. 2006, 426, 280-284. (b) Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629. (c) Oh, H. K.; Jin, Y. C.; Sung, D. D.; Lee, I. Org. Biomol. Chem. 2005, 3, 1240-1244. (d) Oh, H. K.; Park, J. E.; Sung, D. D.; Lee, I. J. Org. Chem. 2004, 69, 9285-9288. (e) Oh, H. K.; Park, J. E.; Sung, D. D.; Lee, I. J. Org. Chem. 2004, 69, 3150-3153. (f) Hwang, J. Y.; Yang, K. Y.; Koo, I. S.; Sung, D. D.; Lee, I. Bull. Korean Chem. Soc. 2006, 27, 733-738.
- (a) Baxter, N. J.; Rigoreau, L. J. M.; Laws, A. P.; Page, M. I. J. Am. Chem. Soc. 2000, 122, 3375-3385. (b) Spillane, W. J.; McGrath, P.; Brack, C.; O'Byrne, A. B. J. Org. Chem. 2001, 66, 6313-6316.
 (c) Gordon, I. M.; Maskill, H.; Ruasse, M. F. Chem. Soc. Rev. 1989, 18, 123-151.
- (a) Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720. (b) Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237-1243. (c) Um, I. H.; Kim, E. J.; Park, H. R.; Jeon, S. E. J. Org. Chem. 2006, 71, 2302-2306. (d) Um, I. H.; Lee, J. Y.; Lee, H. W.; Nagano, Y.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2005, 70, 4980-4987. (e) Um, I. H.; Chun, S. M.; Bae, S. K. Bull. Korean Chem. Soc. 2005, 26, 457-460.
- Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970-6980.
- (a) Castro, E. A.; Santander, C. L. J. Org. Chem. 1985, 50, 3595-3600. (b) Castro, E. A.; Valdivia, J. L. J. Org. Chem. 1986, 51.

1668v1672. (c) Castro. E. A.: Steinfort, G. B. J. Chem. Soc., Perkin Trans. 2 1983, 453-457.

- (a) Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 7788-7791. (b) Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 3530-3536. (c) Castro, E. A.; Vivanco, M.; Aguayo, R.; Santos, J. G. J. Org. Chem. 2004, 69, 5399-5404. (d) Castro, E. A.; Aguayo, R.; Santos, J. G. J. Org. Chem. 2003, 68, 8157-8161.
- (a) Um, I. H.; Hwang, S. J.; Baek, M. H.; Park, E. J. J. Org. Chem. 2006, 71, 9191-9197.
 (b) Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942.
 (c) Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem. 2000, 65, 5659-5663.
- (a) Um, I. H.; Hong, J. Y.; Seok, J. A. J. Org. Chem. 2005, 70, 1438-1444. (b) Um, I. H.; Chun, S. M.; Chae, O. M.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3166-3172. (c) Um, I. H.; Hong, J. Y.; Kim, J. J.; Chae, O. M.; Bae, S. K. J. Org. Chem. 2003, 68, 5180-5185.
- Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803.
- Um, I. H.; Han, H. J.; Ahn, J. A.; Kang, S.; Buncel, E. J. Org. Chem. 2002, 67, 8475-8480.
- (a) Tsuno, Y.; Fujio, M. Adv. Phys. Org. Chem. 1999, 32, 267-385.
 (b) Tsuno, Y.; Fujio, M. Chem. Soc. Rev. 1996, 25, 129-139. (c) Yukawa, Y.; Tsuno, Y. Bull. Chem. Soc. Jpn. 1959, 32, 965-970.
- (a) Fujio, M.; Rappoport, Z.; Uddin, M. K.; Kim, H. J.; Tsuno, Y. Bull, Chem. Soc. Jpn. 2003, 76, 163-169. (b) Nakata, K.; Fujio, M.; Nishimoto, K.; Tsuno, Y. J. Phys. Org. Chem. 2003, 16, 323-335. (c) Uddin, M. K.; Fujio, M.; Kim, H. J.; Rappoport, Z.; Tsuno, Y. Bull. Chem. Soc. Jpn. 2002, 75, 1371-1379.
- Oh, H. K.; Woo, S. Y.; Shin, C. H.; Lee, I. Int. J. Chem. Kinet. 1998, 30, 849-857.
- Albert, A. *Physical Methods in Heterocyclic Chemistry*, Katritzky, A. R., Ed.; Acadmic Press: London, 1963; vol. 1, p 44.
- Castro, E. A.; Moodie, R. B. J. Chem. Soc., Chem. Commun. 1973, 828-829.