DOI QR코드

DOI QR Code

Crystal Structure of Fully Dehydrated Partially Cs+-Exchanged Zeolite X, Cs52Na40-X (The Highest Cs+-Exchanged Level Achieved by Conventional Method and Confirmation of Special Site Selectivity)

  • Published : 2007.02.20

Abstract

The crystal structure of fully dehydrated partially Cs+-exchanged zeolite X, [Cs52Na40Si100Al92O384], a = 24.9765(10) A, has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at 21 °C. The crystal was prepared by flow method for 5 days using exchange solution in which mole ratio of CsOH and CsNO3 was 1 : 1 with total concentration of 0.05 M. The crystal was then dehydrated at 400 °C and 2 × 10-6 Torr for 2 days. The structure was refined to the final error indices, R1 = 0.051 and wR2 (based on F2) = 0.094 with 247 reflections for which Fo > 4σ (Fo). In this structure, about fifty-two Cs+ ions per unit cell are located at six different crystallographic sites with special selectivity; about one Cs+ ion is located at site I, at the centers of double oxygen-rings (D6Rs), two Cs+ ions are located at site I', and six Cs+ ions are found at site II'. This is contrary to common view that Cs+ ions cannot pass sodalite cavities nor D6Rs because six-ring entrances are too small. Ring-opening by the formation of ?OH groups and ring-flexing make Cs+ ions at sites I, I', and II' enter six-oxygen rings. The defects of zeolite frameworks also give enough mobility to Cs+ ions to enter sodalite cavities and D6Rs. Another six Cs+ ions are found at site II, thirty-six are located at site III, and one is located at site III' in the supercage, respectively. Forty Na+ ions per unit cell are located at two different crystallographic sites; about fourteen are located at site I, the centers of D6Rs and twenty-six are also located at site II in the supercage. Cs+ ions and Na+ ions at site II are recessed ca. 0.34(1) A and 1.91(1) A into the supercage, respectively. In this work, the highest exchange level of Cs+ ions per unit cell was achieved in zeolite X by conventional aqueous solution methods and it was also shown that Cs+ ion could pass through the sixoxygen rings.

Keywords

References

  1. Flanigen, E. M. Zeoites. Science and Technology; Nijhoff, M., Ed.; The Hague, 1984
  2. Davis, R. J.; Doskocil, E. J.; Bordawekar, S. Catalysis Today 2003, 62, 241 https://doi.org/10.1016/S0920-5861(00)00425-9
  3. Rodriguez, I.; Cambon, H.; Brunel, D.; Lasperas, M.; Geneste, P. Studies in Surface Science and Catalysis 1993, 78, 623 https://doi.org/10.1016/S0167-2991(08)63375-3
  4. Breck, D. W.; Eversole, W. G.; Milton, R. M.; Reed, T. B.; Thomas, T. L. J. Am. Chem. Soc. 1956, 78, 5963 https://doi.org/10.1021/ja01604a001
  5. Barrier, R. M.; Rees, L. V. C.; Ward, D. J. Proc. R. Soc. Ser. A 1963, 273, 180
  6. Breck, D. W. Zeolite Molecular Sieves; Wiley-Interscience: New York, 1974; pp 537-541
  7. Heo, N. H.; Seff, K. J. Am. Chem. Soc. 1987, 109, 7986 https://doi.org/10.1021/ja00260a008
  8. Sun, T.; Seff, K.; Heo, N. H.; Petranovskii, V. P. J. Phys. Chem. 1994, 98, 5768 https://doi.org/10.1021/j100073a033
  9. Handbook of Chemistry and Physics, 70th ed.; The Chemical Rubber Co.: Cleveland, Ohio, 1989/1990; pp F-187
  10. Breck, D. W. Zeolite Molecular Sieves; Wiley-Interscience: New York, 1974; p 145
  11. Barrer, R. M. Hydrothermal Chemistry of Zeolites; Academic Press: London, 1982; p 24
  12. Sherry, H. S. J. Phys. Chem. 1966, 70, 1158 https://doi.org/10.1021/j100876a031
  13. Bae, M. N.; Song, M. K.; Kim, Y. Bull. Korean Chem. Soc. 2001, 22, 1091
  14. Jeong, G. H.; Kim, Y. Bull. Korean Chem. Soc. 2002, 23, 1121 https://doi.org/10.5012/bkcs.2002.23.8.1121
  15. Jang, S. B.; Song, S. H.; Kim, Y. J. Korean Chem. Soc. 1996, 40, 427
  16. Ryu, K. S.; Bae, M. N.; Kim, Y.; Seff, K. Microsoft and Mesosoft Materials 2004, 71, 65
  17. Subramanian, V.; Seff, K. J. Phys. Chem. 1980, 84, 2928 https://doi.org/10.1021/j100459a020
  18. Kim, Y.; Song, S. H.; Seff, J. Phys. Chem. 1990, 94, 5959 https://doi.org/10.1021/j100378a064
  19. Jeong, M. S.; Kim, Y.; Seff, K. J. Phys. Chem. 1993, 97, 10139 https://doi.org/10.1021/j100141a040
  20. Pluth, J. J. Ph. D. Thesis, University of Washington, University Microfilms, No. 71-28459, Ann Arber, MI, 1991
  21. Shepelev, Yu. F.; Butikova, I. K.; Smolin, Yu. I. Zeolites 1991, 11, 287 https://doi.org/10.1016/S0144-2449(05)80234-9
  22. Subramanian, V.; Seff, K. J. Phys. Chem. 1980, 84, 2928 https://doi.org/10.1021/j100459a020
  23. Jeong, M. S.; Kim, Y.; Seff, K. J. Phys. Chem. 1993, 97, 10139 https://doi.org/10.1021/j100141a040
  24. Barrier, R. M.; Rees, L. V. C.; Shamsuzzoha, M. J. J. Inorg. Nucl. Chem. 1968, 30, 333 https://doi.org/10.1016/0022-1902(68)80104-6
  25. Theng, B. K. G.; Vansant, E.; Uytterhoeven, J. B. Trans. Faraday Soc. 1968, 64, 3370 https://doi.org/10.1039/tf9686403370
  26. Bogomolov, V. N.; Petranovskii, V. P. Zeolites 1986, 6, 418 https://doi.org/10.1016/0144-2449(86)90020-5
  27. International Tables for X-ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol II, p 302
  28. Sheldrick, G. M. SHELXS-97: A Program for Determination; University of Gottingen: Germany, 1997; Sheldrick, G. M. SHELXL-97: A Program for Structure Refinement; University of Gottingen: Germany, 1997
  29. Bae, M. N.; Song, M. K.; Kim, Y. Bull. Korean Chem. Soc. 2001, 22, 1081
  30. International Tables for X-ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol IV, p 73
  31. Cromer, D. T. Acta Crystallogr. 1965, 18, 17 https://doi.org/10.1107/S0365110X6500004X
  32. International Tables for X-ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol IV, p 149
  33. Zhu, L.; Seff, K. J. Phys. Chem. B 2000, 104, 8946, Errata: 2001, 106, 12221 https://doi.org/10.1021/jp000710r
  34. Koller, H.; Burger, B.; Schneider, A. M.; Engelhardt, G.; Weitkamp, J. Microporous Mater. 1995, 5, 219 https://doi.org/10.1016/0927-6513(95)00061-5
  35. Vance Jr., T. B.; Seff, K. J. Phys. Chem. 1975, 79, 2163 https://doi.org/10.1021/j100587a021
  36. Olson, D. H. private communication

Cited by

  1. Ab Initio Electron Diffraction Structure Analysis of Zeolites – Direct Methods Determination of NaY vol.226, pp.5, 2011, https://doi.org/10.1524/zkri.2011.1366
  2. Single-Crystal Structures of Sr2+ and Cs+-Exchanged Zeolites X and Y, |Sr40Cs12|[Si100Al92O384]-FAU and |Sr29Cs17|[Si117Al75O384]-FAU vol.44, pp.5, 2014, https://doi.org/10.1007/s10870-014-0511-9
  3. Behavior of cesium cation in zeolite Y (FAU, Si/Al = 1.56) and their single-crystal structures, |Cs75−xNax|[Si117Al75O384]-FAU (x = 35 and 54) vol.24, pp.1, 2017, https://doi.org/10.1007/s10934-016-0237-5
  4. Crystallographic studies on the site selectivity of Ca2+, K+, and Rb+ ions within zeolite Y (Si/Al = 1.56) vol.24, pp.4, 2017, https://doi.org/10.1007/s10934-016-0335-4
  5. Site Competition of Ca2+ and Cs+ Ions in the Framework of Zeolite Y (Si/Al = 1.56) and Their Crystallographic Studies vol.31, pp.4, 2018, https://doi.org/10.9727/jmsk.2018.31.4.235
  6. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  7. Synthesis of Fully Dehydrated Partially Cs+-exchanged Zeolite Y (FAU, Si/Al = 1.56), |Cs45Na30|[Si117Al75O384]-FAU and Its Single-crys vol.30, pp.6, 2007, https://doi.org/10.5012/bkcs.2009.30.6.1285
  8. Crystal Structure and Luminescence of Sn,I,Cs,Na-Y, a Lead-Free Zeolite Containing Tetrahedrally Distorted Cubes of Sn4I44+ vol.125, pp.28, 2007, https://doi.org/10.1021/acs.jpcc.1c04350