DOI QR코드

DOI QR Code

Kinetics and Mechanism of the Addition of Anilines to β-Nitrostilbenes in Acetonitrile

  • Published : 2007.10.20

Abstract

Addition reactions of anilines (XC6H4NH2) to β-nitrostilbene (YC6H4CH=C(NO2)C6H4Y') have been investigated in acetonitrile at 30.0 oC. The magnitude of βX values (=0.11-0.34) indicates relatively earlier transition state for additions with anilines than with benzylamines. The signs of ρY and ρY' are positive with Δρ = ρY?ρY' = 0.04, demonstrating a TS imbalance with a negative charge development on the Cβ in the TS. The signs of cross-interaction constants ρXY (<0), ρXY' (<0) and ρYY' (>0) are consistent with bond forming and breaking processes. The relatively weak normal kinetic isotope effects involving deutarated nucleophiles, kH/kD>1, suggest an early, hydrogen-bonded, 4-member cyclic TS.

Keywords

References

  1. Bernasconi, C. F. Acc. Chem. Res. 1987, 20, 301 https://doi.org/10.1021/ar00140a006
  2. Bernasconi, C. F. Tetrahedron 1989, 45, 4017 https://doi.org/10.1016/S0040-4020(01)81304-1
  3. Bernasconi, C. F. Adv. Phys. Org. Chem. 1992, 27, 119
  4. Oh, H. K.; Yang, J. H.; Sung, D. D.; Lee, I. J. Chem. Soc. Perkin Trans. 2 2000, 101
  5. Oh, H. K.; Kim, T. S.; Lee, H. W.; Lee, I. J. Chem. Soc. Perkin Trans. 2 2002, 282
  6. Oh, H. K.; Yang, J. H.; Hwang, Y. H.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2002, 23, 221 https://doi.org/10.5012/bkcs.2002.23.2.221
  7. Oh, H. K.; Yang, J. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 2188 https://doi.org/10.1021/jo991823d
  8. Hwang, J.; Yang, K.; Koo, I. S.; Sung, D. D.; Lee, I. Bull. Korean Chem. Soc. 2006, 27, 733 https://doi.org/10.5012/bkcs.2006.27.5.733
  9. Oh, H. K.; Kim, I. K.; Sung, D. D.; Lee, I. Org. Biomol. Chem. 2004, 2, 1213 https://doi.org/10.1039/b401239a
  10. Oh, H. K.; Kim, I. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2004, 69, 3806 https://doi.org/10.1021/jo034370s
  11. Oh, H. K.; Kim, T. S.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2003, 24, 193 https://doi.org/10.5012/bkcs.2003.24.2.193
  12. Oh, H. K.; Yang, J. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 5391 https://doi.org/10.1021/jo000512w
  13. Oh, H. K.; Lee, J. M.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 3089 https://doi.org/10.1021/jo047832q
  14. Oh, H. K.; Kim, I. K.; Sung, D. D.; Lee, I. Bull. Korean Chem. Soc. 2005, 26, 641 https://doi.org/10.1007/s11814-009-0107-9
  15. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57
  16. Lee, I. Chem. Soc. Rev. 1990, 19, 317 https://doi.org/10.1039/cs9901900317
  17. Kaljurand, I.; Kutt, A.; Soovali, L.; Rodima, T.; Maemets, V.; Leito, I.; Koppel, I. A. J. Org. Chem. 2005, 70, 1019 https://doi.org/10.1021/jo048252w
  18. Ruasse, M.-F. Adv. Phys. Org. Chem. 1993, 28, 207 https://doi.org/10.1016/S0065-3160(08)60183-5
  19. Pross, A. Theoretical and Physical Aspects of Organic Chemistry; Wiley: New York, 1995; Chapter 5
  20. Dewar, M. J. S.; Dougherty, R. C. The PMO Theory of Organic Chemistry; Plenum: New York, 1995; Chapter 5
  21. Pross, A. Adv. Phys. Org. Chem. 1997, 14, 69
  22. Buncel, E.; Wilson, H. J. Chem. Educ. 1987, 64, 557 https://doi.org/10.1021/ed064p557
  23. Robertson, D. N. J. Org. Chem. 1960, 25, 47 https://doi.org/10.1021/jo01071a014
  24. Lee, I. Chem. Soc. Rev. 1995, 24, 223 https://doi.org/10.1039/cs9952400223
  25. Sconne, A.; Braye, E.; Bruylants, A. Bull. Soc. Chim. Belg. 1953. 62, 155
  26. Wiberg, K. B. Physical Organic Chemistry; Wiley: New York, 1964; p 378

Cited by

  1. Synthesis of Unsymmetrical 3,4-Diaryl-3-pyrrolin-2-ones Utilizing Pyrrole Weinreb Amides vol.76, pp.20, 2011, https://doi.org/10.1021/jo2013516
  2. Effects of substituents on activation parameter changes in the Michael-type reactions of nucleophilic addition to activated alkenes and alkynes in solution vol.147, pp.2, 2016, https://doi.org/10.1007/s00706-015-1622-5
  3. Alkali Metal Ion Catalysis in Nucleophilic Substitution Reactions of 5-Nitro-8-quinolyl Benzoate with Alkali Metal Ethoxides in Anhydrous Ethanol: Unusually High Na+ Ion Selectivity vol.29, pp.1, 2007, https://doi.org/10.5012/bkcs.2008.29.1.117
  4. Kinetic Study on Michael-type Reactions of 1-Phenyl-2-propyn-1-one with Alicyclic Secondary Amines: Effect of Medium on Reactivity and Mechanism vol.29, pp.10, 2007, https://doi.org/10.5012/bkcs.2008.29.10.1911
  5. Aminolysis of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl Benzoates: Effect of ortho-Nitro Group on Reactivity and Mechanism vol.29, pp.10, 2007, https://doi.org/10.5012/bkcs.2008.29.10.1915
  6. A Kinetic Study on Michael-type Reactions of 1-(X-Substituted Phenyl)-2-propyn-1-ones with Amines: Effect of Amine Nature on Reactivity and Mechanism vol.29, pp.4, 2007, https://doi.org/10.5012/bkcs.2008.29.4.767
  7. Aminolyses of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl 2-Furoates: Effect of ortho-Substituent on Reactivity and Mechanism vol.29, pp.4, 2007, https://doi.org/10.5012/bkcs.2008.29.4.772
  8. Aminolysis of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl 2-Thiophenecarboxylates: Effect of ortho-Nitro Group on Reactivity and Mechanism vol.29, pp.8, 2008, https://doi.org/10.5012/bkcs.2008.29.8.1459
  9. Michael-type Reactions of 1-(X-substituted phenyl)-2-propyn-1-ones with Alicyclic Secondary Amines in MeCN and H2O: Effect of Medium on Reactivity and Transition-State Structure vol.31, pp.5, 2007, https://doi.org/10.5012/bkcs.2010.31.5.1199