DOI QR코드

DOI QR Code

Production and Degradation of Cyanobacterial Toxin in Water Reservoir, Lake Soyang

  • Pyo, Dong-Jin (Department of Chemistry, Kangwon National University) ;
  • Jin, Jung-Eun (Department of Chemistry, Kangwon National University)
  • Published : 2007.05.20

Abstract

Cyanobacterial toxins, microcystins are very potent hepatotoxins and their occurrence has been reported all over the world. They could threaten human health when toxic Microcystis occurs in water supply reservoirs. In this study, the effects of several environmental factors on production and degradation of toxins produced by cyanobacteria in Lake Soyang have been studied. A new rapid quantification method of microcystins using fluorescence for a detection signal and a lateral-flow-type immunochromatography as a separation system was used. Culture age, temperature, light intensity, pH, N-nutrient concentration, P-nutrient concentration, iron and zinc concentration were the most importantly examined factors. The toxin content was the highest on 17-18 days and at temperatures between 20℃ and 25℃, and at pH between 8.4 and 8.8.

Keywords

References

  1. Carmichael, W. W.; Hallegraeff, G. M.; Anderson, D. M.; Cembella, A. D. Scienctific and Cultural Organization; Paris, 1995
  2. Sivonen, K. Phycologia 1996, 35, 12 https://doi.org/10.2216/i0031-8884-35-6S-12.1
  3. Dunn, J. B. Med. J. 1996, 312, 1183
  4. Yu, S.-Z.; Steffensen, D. A.; Nichoson, B. C. Australian Centre for Water Quality Research; Salisbury, Australia, 1994
  5. Botes, D. P.; Wessels, P.; Kruger, L. H.; Runnegar, M. T. C.; Santikarn, S.; Smith, R. J.; Barna, C. J.; Williams, D. H. J. Chem. Soc. Perkins Trans. 1985, 1, 2747
  6. Lahti, K.; Hiisvirta, L. Water Supply 1989, 7, 149
  7. Keijola, A. M.; Himberg, K.; Esala, A. L.; Sivonen, K.; Hiisvirta, L. Toxicol. Assass. 1988, 3, 643 https://doi.org/10.1002/tox.2540030516
  8. Watanabe, M. F.; Harada, K.-I.; Fujiki, H. Waterbloom of Bluegreen Algae and Their Toxins; University of Tokyo Press: Tokyo, Japan, 1994
  9. Sugaya, Y.; Yasuno, M.; Yanai, T. Jpn. J. Limnol. 1990, 51, 149 https://doi.org/10.3739/rikusui.51.149
  10. Erikson, J. E.; Meriluoto, J. A. O.; Lindholm, T. Hydrobiologia 1989, 183, 211 https://doi.org/10.1007/BF00007241
  11. Harada, K.-L.; Matsuura, K.; Sujuki, M.; Oka, H.; Watanabe, M. F.; Oishi, S.; Dahlem, A.-M.; Beasley, V. R.; Carmichael, W. W. J. Chromatogr. 1988, 448, 275
  12. Pyo, D.; Shin, H. Anal. Chem. 1999, 71(20), 4772 https://doi.org/10.1021/ac990440c
  13. Pyo, D.; Huang, Y.; Kim, Y.; Hahn, J. H. Bull. Korean Chem. Soc. 2005, 26, 939 https://doi.org/10.5012/bkcs.2005.26.6.939
  14. Oh, H.-M.; Lee, S.-J.; Kim, J.-H.; Yoon, B.-D. Appl. Enviro. Mico. 2002, 67, 1484
  15. Pyo, D.; Moon, D. Bull. Korean Chem. Soc. 2005, 26, 2089 https://doi.org/10.5012/bkcs.2005.26.12.2089
  16. Pyo, D.; Choi, E.; Cha, G. S.; Lee, J.; Jung, S.; Kim, M. S. Bull. Korean Chem. Soc. 2003, 24, 126 https://doi.org/10.5012/bkcs.2003.24.1.126
  17. Ha, S. G.; Park, J. B.; Ko, K. K.; Choi, E. Y. Hybridoma 1999, 18, 371
  18. Tsuji, K.; Naito, S.; Kondo, F.; Ishikawa, N.; Watanabe, M. F.; Suzuki, M.; Harada, K.-I. Environ. Sci. Technol. 1993, 28, 173

Cited by

  1. Analysis of Mathematics and Sustainability in an Impulsive Eutrophication Controlling System vol.2013, pp.1687-0409, 2013, https://doi.org/10.1155/2013/726172
  2. Research on self-purification capacity of Lake Taihu vol.22, pp.11, 2015, https://doi.org/10.1007/s11356-014-3920-6
  3. ) Using Metabolomics vol.38, pp.4, 2017, https://doi.org/10.1002/bkcs.11112
  4. A Drinking Water Crisis in Lake Taihu, China: Linkage to Climatic Variability and Lake Management vol.45, pp.1, 2010, https://doi.org/10.1007/s00267-009-9393-6
  5. Lake eutrophication: Control countermeasures and recycling exploitation vol.35, pp.11, 2007, https://doi.org/10.1016/j.ecoleng.2009.04.003