DOI QR코드

DOI QR Code

Characterization of NiSO4 Supported on Fe2O3 and Catalytic Properties for Ethylene Dimerization

  • Pae, Young-Il (Department of Chemistry, University of Ulsan) ;
  • Sohn, Jong-Rack (Department of Applied Chemistry, Engineering College, Kyungpook National University)
  • Published : 2007.08.20

Abstract

The NiSO4 supported on Fe2O3 catalysts were prepared by the impregnation method. No diffraction line of nickel sulfate was observed up to 30 wt %, indicating good dispersion of nickel sulfate on the surface of Fe2O3. The addition of nickel sulfate to Fe2O3 shifted the phase transition of Fe2O3 (from amorphous to hematite) to higher temperatures because of the interaction between nickel sulfate and Fe2O3. 20-NiSO4/Fe2O3 containing 20 wt % of NiSO4 and calcined at 500 oC exhibited a maximum catalytic activity for ethylene dimerization. The initial product of ethylene dimerization was found to be 1-butene and the initially produced 1-butene was also isomerized to 2-butene during the reaction. The catalytic activities were correlated with the acidity of catalysts measured by the ammonia chemisorption method.

Keywords

References

  1. Pae, Y. I.; Lee, S. H.; Sohn, J. R. Catal. Lett. 2005, 99, 241 https://doi.org/10.1007/s10562-005-2130-8
  2. Bernardi, F.; Bottoni, A.; Rossi, I. J. Am. Chem. Soc. 1998, 120, 7770 https://doi.org/10.1021/ja980604r
  3. Sohn, J. R.; Ozaki, A. J. Catal. 1979, 59, 303 https://doi.org/10.1016/S0021-9517(79)80034-2
  4. Sohn, J. R.; Ozaki, A. J. Catal. 1980, 61, 29 https://doi.org/10.1016/0021-9517(80)90336-X
  5. Wendt, G.; Fritsch, E.; Schollner, R.; Siegel, H. Z. Anorg. Allg. Chem. 1980, 467, 51 https://doi.org/10.1002/zaac.19804670107
  6. Sohn, J. R.; Shin, D. C. J. Catal. 1996, 160, 314 https://doi.org/10.1006/jcat.1996.0150
  7. Berndt, G. F.; Thomson, S. J.; Webb, G. J. J. Chem. Soc. Faraday Trans. 1983, 179, 195
  8. Herwijnen, T. V.; Doesburg, H. V.; Jong, D. V. J. Catal. 1973, 28, 391 https://doi.org/10.1016/0021-9517(73)90132-2
  9. Sohn, J. R.; Park, W. C.; Kim, H. W. J. Catal. 2002, 209, 69 https://doi.org/10.1006/jcat.2002.3581
  10. Sohn, J. R.; Park, W. C. Bull. Korean Chem. Soc. 2000, 21, 1063
  11. Urabe, K.; Koga, M.; Izumi, Y. J. Chem. Soc., Chem. Commun. 1989, 807
  12. Wendt, G.; Hentschel, D.; Finster, J.; Schollner, R. J. Chem. Soc. Faraday Trans. 1983, 179, 2013
  13. Kimura, K.; Ozaki, A. J. Catal. 1964, 3, 395 https://doi.org/10.1016/0021-9517(64)90142-3
  14. Maruya, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1973, 46, 351 https://doi.org/10.1246/bcsj.46.351
  15. Hartmann, M.; Poppl, A.; Kevan, L. J. Phys. Chem. 1996, 100, 9906 https://doi.org/10.1021/jp9602181
  16. Elev, I. V.; Shelimov, B. N.; Kazansky, V. B. J. Catal. 1984, 89, 470 https://doi.org/10.1016/0021-9517(84)90323-3
  17. Choo, H.; Kevan, L. J. Phys. Chem. B 2001, 105, 6353 https://doi.org/10.1021/jp0106909
  18. Tanabe, K.; Misono, M.; Ono, Y.; Hattori, H. New Solid Acids and Bases Kodansha-Elsevier: Tokyo, 1989; p 185
  19. Arata, K.; Hino, M.; Yamagata, N. Bull. Chem. Soc. Jpn. 1990, 63, 244 https://doi.org/10.1246/bcsj.63.244
  20. Sohn, J. R.; Kim, H. W.; Lim, J. S. J. Ind. Eng. Chem. 2006, 12, 104
  21. Hino, M.; Arata, K. Chem. Lett. 1979, 1259
  22. Hino, M.; Arata, K. Chem. Lett. 1980, 963
  23. Tanabe, K.; Kayo, A.; Yamaguchi, T. J. Chem. Soc., Chem. Commun. 1981, 602
  24. Kayo, A.; Yamaguchi, T.; Tanabe, K. J. Catal. 1983, 83, 99 https://doi.org/10.1016/0021-9517(83)90033-7
  25. Tanabe, K.; Hattori, H.; Yamaguchi, T.; Yokoyama, S.; Umematsu, J.; Sanada, Y. Fuel 1982, 61, 389 https://doi.org/10.1016/0016-2361(82)90056-4
  26. Hsu, C. Y.; Heimbuch, C. R.; Armes, C. T.; Gates, B. C. J. Chem. Soc., Chem. Commun. 1992, 1645
  27. Cheung, T. K.; Gates, B. C. J. Catal. 1997, 168, 522 https://doi.org/10.1006/jcat.1997.1654
  28. Coelho, M. A.; Resasco, D. E.; Sikabwe, E. C.; White, R. L. Catal. Lett. 1995, 32, 253 https://doi.org/10.1007/BF00813219
  29. Sohn, J. R.; Lee, S. H. Appl. Catal. A: Gen. 2004, 266, 89 https://doi.org/10.1016/j.apcata.2004.01.034
  30. Sohn, J. R.; Lim, J. S. Bull. Korean Chem. Soc. 2005, 26, 1029 https://doi.org/10.5012/bkcs.2005.26.7.1029
  31. Sohn, J. R.; Lee, S. G.; Shin, D. C. Bull. Korean Chem. Soc. 2006, 27, 1623 https://doi.org/10.5012/bkcs.2006.27.10.1623
  32. Sohn, J. R.; Kim, J. G.; Kwon, T. D.; Park, E. H. Langmuir 2002, 18, 1666 https://doi.org/10.1021/la011304h
  33. Saur, O.; Bensitel, M. A. B.; Saad, M.; Lavalley, J. C.; Tripp, C. P.; Morrow, B. A. J. Catal. 1986, 99, 104 https://doi.org/10.1016/0021-9517(86)90203-4
  34. Yamaguchi, T. Appl. Catal. 1990, 61, 25
  35. Morrow, B. A.; McFarlane, R. A.; Lion, M.; Lavalley, J. C. J. Catal. 1987, 107, 232 https://doi.org/10.1016/0021-9517(87)90288-0
  36. Sohn, J. R.; Park, W. C. Appl. Catal. A: Gen. 2002, 230, 11 https://doi.org/10.1016/S0926-860X(01)00952-8
  37. Hua, W.; Xia, Y.; Yue, Y.; Gao, Z. J. Catal. 2000, 196, 104 https://doi.org/10.1006/jcat.2000.3032
  38. Sohn, J. R.; Park, W. C. Appl. Catal. A: Gen. 2003, 239, 269 https://doi.org/10.1016/S0926-860X(02)00392-7
  39. Siriwardane, R. V.; Poston, J. A. Jr.; Fisher, E. P.; Shen, M. S; Miltz, A. L. Appl. Surf. Sci. 1999, 152, 219 https://doi.org/10.1016/S0169-4332(99)00319-0
  40. Sohn, J. R. J. Ind. Eng. Chem. 2004, 10, 1
  41. Satsuma, A.; Hattori, A.; Mizutani, K.; Furuta, A.; Miyamoto, A.; Hattori, T.; Murakami, Y. J. Phys. Chem. 1988, 92, 6052 https://doi.org/10.1021/j100332a042
  42. Sohn, J. R.; Lee, S. H. Appl. Catal. A: Gen. 2004, 266, 89 https://doi.org/10.1016/j.apcata.2004.01.034
  43. Sohn, J. R.; Lee, S. H. Appl. Catal. A: Gen. 2007, 321, 27 https://doi.org/10.1016/j.apcata.2007.01.024
  44. Arata, K. Adv. Catal. 1990, 37, 165 https://doi.org/10.1016/S0360-0564(08)60365-X
  45. Yamaguch, T.; Jim, T.; Tanabe, K. J. Phys. Chem. 1986, 90, 3148 https://doi.org/10.1021/j100405a022
  46. Tanabe, K. Solid Acids and Bases Kodansha, Tokyo, 1970; p 103
  47. Sohn, J. R.; Lim, J. S. Catal. Today 2006, 111, 403 https://doi.org/10.1016/j.cattod.2005.10.052
  48. Sohn, J. R.; Han, J. S. J. Ind. Eng. Chem. 2005, 11, 439

Cited by

  1. Nickel-based solid catalysts for ethylene oligomerization – a review vol.4, pp.8, 2014, https://doi.org/10.1039/C4CY00305E
  2. Heterogeneous catalysts for gas-phase conversion of ethylene to higher olefins vol.34, pp.5, 2018, https://doi.org/10.1515/revce-2017-0003
  3. Nickel Catalyzed Olefin Oligomerization and Dimerization vol.120, pp.15, 2007, https://doi.org/10.1021/acs.chemrev.0c00076