References
- Bai, M.; Seitz, W. R. Talanta 1994, 41, 993 https://doi.org/10.1016/0039-9140(94)E0049-W
- Garcia- Golding, F.; Giallorenzo, M.; Moreno, N.; Chang, V. Sens. Actuators A Phys. 1995, 47, 337
- Chang, Q.; Murtaza, Z.; Lakowicz, J. R.; Rao, G. Anal. Chim. Acta 1997, 350, 97 https://doi.org/10.1016/S0003-2670(97)00298-5
- Niu, C.-G.; Qin, P.-Z.; Zeng, G.-M.; Gui, X.-Q.; Guan, A.-L. Anal. Bioanal. Chem. 2007, 387, 1067 https://doi.org/10.1007/s00216-006-1016-y
- Kim, J. S.; Choi, M. G.; Huh, Y.; Kim, M. H.; Kim, S. H.; Wang, S. Y.; Chang, S.-K. Bull. Korean Chem. Soc. 2006, 27, 2058 https://doi.org/10.5012/bkcs.2006.27.12.2058
- Liang, Y. Y. Anal. Chem. 1990, 62, 2504 https://doi.org/10.1021/ac00221a018
- Oguchi, R.; Yamaguchi, K.; Shibamato, T. J. Chromatogr. Sci. 1988, 26, 588 https://doi.org/10.1093/chromsci/26.11.588
- Hisamoto, H.; Manabe, Y.; Yanai, H.; Tohma, H.; Yamada, T.; Suzuki, K. Anal. Chem. 1998, 70, 1255 https://doi.org/10.1021/ac970637+
- Gruda, I.; Bolduc, F. J. Org. Chem. 1984, 49, 3300 https://doi.org/10.1021/jo00192a010
- Kumoi, S.; Kobayashi, H.; Ueno, K. Talanta 1972, 19, 505 https://doi.org/10.1016/0039-9140(72)80112-7
- Ercelen, S.; Klymchenko, A. S.; Demchenko, A. P. Anal. Chim. Acta 2002, 464, 273 https://doi.org/10.1016/S0003-2670(02)00493-2
- Liu, W.; Wang, Y.; Jin, W.; Shen, G.; Yu, R. Anal. Chim. Acta 1999, 383, 299 https://doi.org/10.1016/S0003-2670(98)00789-2
- Citterio, D.; Minamihashi, K.; Kuniyoshi, Y.; Hisamoto, H.; Sasaki, S.; Suzuki, K. Anal. Chem. 2001, 73, 5339 https://doi.org/10.1021/ac010535q
- Yang, X.; Niu, C.-C.; Shang, Z.-J.; Shen, G.-L.; Yu, R.-Q. Sens. Actuators B Chem. 2001, 75, 43
- Pinheiro, C.; Lima, J. C.; Parola, A. J. Sens. Actuators B Chem. 2006, 114, 978 https://doi.org/10.1016/j.snb.2005.08.013
- Molecular Probes/Invitrogen. In The Handbook: A Guide to Fluorescent Probes and Labeling Technologies. Web Edition, accessed 7/2007. http://probes.invitrogen.com
- Margulies, D.; Felder, C. E.; Melman, G.; Shanzer, A. J. Am. Chem. Soc. 2007, 129, 347 https://doi.org/10.1021/ja065317z
- Shortreed, M.; Kopelman, R.; Kuhn, M.; Hoyland, B. Anal. Chem. 1996, 68, 1414 https://doi.org/10.1021/ac950944k
- Krol, M.; Wrona, M.; Page, C. S.; Bates, P. A. J. Chem. Theory Comput. 2006, 2, 1520 https://doi.org/10.1021/ct600235y
- Klonis, N.; Sawyer, W. H. Photochem. Photobiol. 2000, 72, 179 https://doi.org/10.1562/0031-8655(2000)072<0179:EOSWMO>2.0.CO;2
- Yang, Y.; Lowry, M.; Schowalter, C. M.; Fakayode, S. O.; Escobedo, J. O.; Xu, X.; Zhang, H.; Jensen, T. J.; Fronczek, F. R.; Warner, I. M.; Strongin, R. M. J. Am. Chem. Soc. 2006, 128, 14081 https://doi.org/10.1021/ja0632207
- Smith, M. J. PCT Int. Appl. WO 9632461, 1996
- Hirano, T.; Kikuchi, K.; Urano, Y.; Higuchi, T.; Nagano, T. J. Am. Chem. Soc. 2000, 122, 12399 https://doi.org/10.1021/ja002467f
Cited by
- Colorimetric detection of trace water in tetrahydrofuran using N,N′-substituted oxoporphyrinogens vol.48, pp.33, 2012, https://doi.org/10.1039/c2cc31118f
- Electrochemistry of nickel(II) and copper(II) N,N′-ethylenebis(acetylacetoniminato) complexes and their electrocatalytic activity for reduction of carbon dioxide and carboxylic acid protons vol.39, pp.7, 2014, https://doi.org/10.1007/s11243-014-9864-3
- -β-Diketonate Complexes in Laponite vol.4, pp.1, 2015, https://doi.org/10.1002/adom.201500502
- Fluorescent and colorimetric sensors for the detection of humidity or water content vol.45, pp.5, 2016, https://doi.org/10.1039/C5CS00494B
- Ratiometric Detection of Water in Acetonitrile with 9-Hydroxybenzo[b]Quinolizinium as Fluorosolvatochromic Probe vol.27, pp.4, 2017, https://doi.org/10.1007/s10895-017-2107-1
- Fluorescent Humidity Sensors Based on Photonic Resonators vol.5, pp.23, 2017, https://doi.org/10.1002/adom.201700663
- Reversible Colorimetric Sensor for Moisture Detection in Organic Solvents and Application in Inkless Writing vol.9, pp.30, 2017, https://doi.org/10.1021/acsami.7b05335
- A simple colorimetric sensor for the detection of moisture in organic solvents and building materials: applications in rewritable paper and fingerprint imaging pp.1364-5528, 2019, https://doi.org/10.1039/C8AN01042K
- Pb4Br113− cluster as a fluorescent indicator for micro water content in aprotic organic solvents vol.134, pp.3, 2009, https://doi.org/10.1039/b817787b
- A Simple Phenol‐Indole Dye as a Chromogenic Probe for the Ratiometric Determination of Water Content in Organic Solvents vol.30, pp.1, 2009, https://doi.org/10.5012/bkcs.2009.30.1.197
- Ratiometric Determination of Water Content in Acetonitrile by a Fluorescein Derivative Bearing Two Pyrene Subunits vol.31, pp.10, 2010, https://doi.org/10.5012/bkcs.2010.31.10.2995
- N-Heteroaryl-1,8-naphthalimide fluorescent sensor for water: Molecular design, synthesis and properties vol.88, pp.3, 2011, https://doi.org/10.1016/j.dyepig.2010.07.009
- Negative solvatochromism of merocyanine dyes: Application as water content probes for organic solvents vol.157, pp.1, 2011, https://doi.org/10.1016/j.snb.2011.03.020
- A Tris(hydroxymethyl)aminomethane‐Rhodamine Spirolactam Derivative as Dual Channel pH and Water Sensor and Its Application to Bio Imaging vol.2015, pp.21, 2015, https://doi.org/10.1002/ejoc.201500415
- A Red‐Emitting Luminescent Material Capable of Detecting Low Water Content in Organic Solvents vol.22, pp.35, 2007, https://doi.org/10.1002/chem.201601616
- 4-Amino-Benzo[F]Isoindole-1,3-Dione Derivatives As Turn-On Fluorescent Indicators For Water Determination In Acetonitrile vol.4, pp.None, 2018, https://doi.org/10.17721/moca.2018.183-191
- Three Indole Derived Azo-Azomethine Dyes as Effective Chemosensors for F− Ion and Trace Water Detection vol.93, pp.7, 2007, https://doi.org/10.1246/bcsj.20200003
- An inquisitive fluorescence method for the real-time detection of trace moisture in polar aprotic solvents with the application of water rancidity in foodstuffs vol.45, pp.10, 2007, https://doi.org/10.1039/d0nj06046a