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NUMERICAL SOLUTION FOR WOOD DRYING ON
ONE-DIMENSIONAL GRID

YONG HUN LEE, WOOK KANG, AND WOO YANG CHUNG

ABSTRACT. A mathematical modeling for the drying process of hygroscopic porous
media, such as wood, has been developed in the past decades. The governing equa-
tions for wood drying consist of three conservation equations with respect to the three
state variables, moisture content, temperature and air density. They are involving
simultaneous, highly coupled heat and mass transfer phenomena. In recent, the equa-
tions were extended to account for material heterogeneity through the density of the
wood and via the density variation of the material process, capillary pressure, ab-
solute permeability, bound water diffusivity and effective thermal conductivity. In
this paper, we investigate the drying behavior for the three primary variables of the
drying process in terms of control volume finite element method to the heterogeneous
transport model on one-dimensional grid.

1. INTRODUCTION

Drying is one of the most complex phenomena happened in engineering because of
the simultaneous heat and mass transfer taking place in the course of the process. In
the past decades, many researchers developed drying models of porous media, in par-
ticular, wood. Wood drying is more difficult than other porous media such as concrete
and brick, because it has the anisotropic and heterogeneous characteristic. Although
the investigation of the drying processes has been realized both experimentally and the-
oretically for centuries, the coupling of heat and mass transfer and other phenomena
in drying is still a challenging problem.

In developing a drying model based on the continuous approach, Whitaker{12, 13]
used the volume averaging technique to derive a system of macroscopic transport equa-
tions from a set of basic transport laws at microscopic level(pore scale) for the three
phases(gas, liquid and solid). He assumed that a porous medium was to be equivalent

2000 Mathematics Subject Classification. Primary 76505, 65C20; Secondary 80A20, 74G15.

Key words and phrases. wood drying, heat and mass transfer, control volume finite element method,
inexact Newton method.

The first author was supported by research fund of Chonbuk National University(BS-2005-69).

The second and third author was supported by Regional Research Centers Program(Bio-housing
Research Institute), granted by the Korean Ministry of Education & Human Resources Development.

95



96 Yong Hun Lee, Wook Kang, and Woo Yang Chung

to a continuum. A system of conservation equations for mass, energy and momentum
was introduced using average state variables. His continuous model is considered as
rigorous and the most advanced continuous model today.

Based on the Whitaker’s theory, a mathematical modelling of the wood drying is
developed by many authors, for example, Perré and Turner [4, 5, 7]. Also the numerical
simulation for the drying process was developed using derived average conservation
equations {1, 2, 3, 8, 11]. Among others, Perré and Turner employed the control volume
finite element method(CVFEM) to solve the system of transport equations. The main
advantage of CVFEM is that it ensures the conservation of mass and enthalpy through
the boundary of each control volume as well as whole domain. However it has some
difficulties due to mathematical complexity of the governing equations.

In this paper, we implement the heterogeneous and highly coupled heat and mass
transfer modelled by Perré and Turner in the literature of CVFEM. In this model, the
capillary pressure, the liquid and gas permeability, the effective diffusivity and effective
thermal conductivity are very important coefficients. These parameters are normally
functions of one or all state variables and depend on material characteristics. We
compute this parameters by using the published values of corresponding primary state
variables.

2. MATHEMATICAL MODELLING

In this section, we introduce the mathematical formulation which represents the
process of the wood drying, based on the model developed by Whitaker [12] and later
by Perré and Turner [5]. The volume averaging method is applied to derive a continuous
drying model for wood at macroscopic level. The wood consists of three phases, free
water, gas(air and water vapor) and solid. Solid includes the bound water.

The conservation equation is typically represented by the following:

where ¢ is the state variables, and ¥ is velocity vector and D effective diffusivity tensor.
The process of the wood drying is governed by three macroscopic conservation equa-

tions {6, 10]. The equations were extended to account for material heterogeneity

through the density of the wood and via density variation of the material properties,

capillary pressure, absolute permeability, bound liquid diffusivity and effective thermal

conductivity. The system of the three governing equations is summarized as follows:
Liguid Mass Conservation:

a = =
57 (PoX +€gpv) + V- (puwVw + py¥g — poDLV Xp) = V - (9gDy V),
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Energy Conservation:

o poXb
2\ Po w s Eg\Pvity T Pally) — wlpf — cglyg
at(p (Xho + he) + eglpohy + pua) = | Ahudp EP)

+V. (pwhw‘_’w + (thv + paha)‘—’g - hbpoﬁbvxb)
=V. (pgl_Dv(hVVwV + hoVw,) + Keg VT),

Air Conservation:
0 -
a(sgpa) + V- (pa¥g) =V - (pgvawa)-

The primary variables in system are the moisture content X, the temperature 7" and
the intrinsic phase air density p,, where:

Pa = EgPa.
Here the moisture content X contains the bound water Xy, i.e.,

X =Xo+Xp, Xe=22 X, =min(X, Xep),

Po

where Xy is free water.

The remaining symbols are secondary variables and parameters, where p represents
density, € the volume fraction, ¥ the phase velocity, w the mass fraction, h the enthalpy
and P the pressure. The subscript a,b,g,s, v, w represent the air, bound water, gas,
solid(cell wall), vapor and water(or liquid) phases, respectively. The density of the
wood is represented by pg and the effective vapor diffusivity, bound water diffusivity
and effective thermal conductivity are represented by Dy, Dy and K.g, respectively
and ¥y and ¥, are the liquid and gaseous phase velocities, respectively, given by the
generalized Darcy’s law:

ok
Vy = —Kgp_zv(pf) V‘Pf = VPe — PeEX.

where £ = w, g and x is the depth scalar.

For the sake of computation, we consider the one-dimensional virtual board sample
which is flat sawn board cut from a soft wood species, as depicted by Figure 1. Also the
computational meshes are generated by dividing evenly spaced within the board. The
board size is 0.04m and as a result of the symmetry, the computational domain is 0.02m.
The density for each node ranges from 252Kg/ m? in the earlywood to 1016Kg/ m? in the
latewood, where the average density is 529.64Kg/m3. The distribution of the density
is shown in Figure 1.

Two end boundaries of the virtual board sample has the different type. The right end
is external boundary and the left end is symmetric boundary. The boundary conditions
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FIGURE 1. The virtual board description and the distribution of the density

proposed for the external drying surfaces are given as

~ 1'—xv
Jw ‘n = k)mCMV In (T,’z_j—o)’
. 1-
Jo-fi = q(T ~ Too) + hukmecMy In (—1%“;2‘1)
v
Pg = Poo:

where J,, and J. represent the fluxes of liquid and energy at the boundary, respectively,
h is the outward unit normal vector, h, and k,, the heat and mass transfer coefficients,
respectively, x, and Z,. the molar fractions of vapor at the exchange surface and
in the air, respectively, and ¢ the molar concentration. The pressure at the external
drying surface is given at the atmospheric pressure. At symmetric boundary, all fluxes
of liquid, heat, vapor and air are set to zero.

Also, we need some of initial conditions. The initial average moisture content X
and temperature T are given by 120% and 25°C, respectively. Then initial moisture
content distribution has to be determined prior to the commencement of the drying
process. The liquid saturation Sy;(,i = 1,...,N) at each node and the equilibrium
capillary pressure Peqm are calculated from the nonlinear system of (IV 4 1) equations
as follows:

PC(SWi’pOi7T> = Pceqm, t= 17'-'aN
Y iSwidi -
g i liwilio | o X,
g Zz poif; fsp

where A; is the area corresponding to the node i. Once the values of Sy; have been
determined using Newton iteration, the initial moisture content can be calculated using:

Swi
X, = M+stp, i=1,...,N

Poi
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FIGURE 2. Initial distribution of moisture content

The computed moisture content ranged from 66% to 155%. In earlywood regions
with lower density higher moisture contents occurs and in latewood regions with higher
density moisture content is lower as depicted in Figure 2.

For the computation of drying process, we also need a suitable drying schedule. The
dry and wet bulb temperatures were ramped up to their kiln operating values of 60°C
and 40°C, respectively, over a period of 10 minutes.

3. CONTROL VOLUME FINITE ELEMENT METHODS

In this section we introduce CVFEM which is used to discretize the transport model.
First, we recast three conservation equations to typical formulation as following:

0
'1 - M =
(3.1) , 6t\1/+v J 0,

where ¥ represents conserved quantities poX +egpv, po(Xhw + hs) +g(pvhy + paha) —

Op 0 Xy Ahydp — 4P or ggp, and J represents fluxes

Jw = pwVw +pvVg — poﬁbVXb — pglz)vav,
Jo = pwhwVw + (pvhv + paha)‘—'g - thODbVXb

—pgDv(hyVwy + hyVuw,) — Keg VT,
Ja = paVg — pgl_)vaa.

Applying time discretization technique such as the backward Euler or the Crank-
Nicolson schemes to (3.1), we have the following stationary equation at each time step

(3.2) (T —gPe) /6t +V-J = 0,

where ¥(P™®Y) means the value of the conserved quantity at the previous time step. 4t
means the time step size.
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FIGURE 3. Construction of a one-dimensional finite elements and
nodes(top) and control volumes(bottom).

As shown in Figure 3, the computational domain is meshed with subinterval elements,
and at each node the control volumes(CVs) are constructed. To obtain the discretized
formulation of the stationary equation (3.2), we have integrating over the each CV

Area(CV) (prev

L N+ V3 s = 0,
where W, the value of ¥ at the node point pt, is representative value of ¥ in the CV,
le.,

1
Uy =
pt Area(CV) /CV v ds,

and applying the Gauss divergence theorem:

alp+ 3 (I-n); = a¥F,
fe€fcv

where o = éreag(t—cv), Fcv is the set of two end-points of the CV and ny is outward unit

normal vector. Also the term (J - n)y is evaluated accurately at the end-point of the
CV. In order to evaluate the approximated value of the flux, we use different method
for the advection and the diffusion terms. The finite element shape functions are used
for the evaluation of the diffusion terms. For examples, the bound liquid diffusivity
and the gradient of the bound water gives:

2 2
Dp=)» NDw, VX,=)» VNXu,
i=1 =1

where the N; are the shape function for a subinterval element containing the end-point
of the CV and ! denotes the nodes of this element. Also, for the advection terms, only
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Vw and Vg, the flux limiting method is used generally [9]. Then we have the 3N discrete
analogue of the equations(3.2) as following:

Fpt(l‘) =

(3:3) (B — 0y 1 ap 30D 4 aw ItV 4 epd T =0,

where the superscript (n+ 1) means the current time level t(**1) (n) the previous time
level t{"), and time step size is 6t = ¢(*+1).— ¢(),

4. NUMERICAL RESULTS

As explained above, we find the numerical solution by solving the transport equations
in terms of control volume finite element methods. The transport coefficients that are
necessary for numerical computation were referred to Truscott and Turner [11].

The discretized formulation (3.3) with boundary conditions is highly coupled system
of nonlinear equations. Then we use the inexact Newton iterative method to solve this
system.

x© . Initial iterate

Forn=0,1,..., until JF(x™)]| < tolerance
Solve V,F(x(™)6x™ = F(x™)
x(M+D) = x() _ 5x (),

where the matrix V,F(x) is the difference approximation to the Jacobean matrix

F'(x) = (g—ff), and we can use the Bi-CGSTAB method to solve linear system. We
can also use the Block TDMA solver because the Jacobean matrix is block tridiagonal
matrix.

Figure 4 shows the drying kinetics during 20 hours. The left figures plot the behaviors
of the average values and the right figures plot the behaviors at the four positions.
The position A is the symmetric boundary, and the position D is the external drying
boundary and the position B(0.01) is located in the latewood which has higher density,
and the position C(0.0175) is located in the earlywood which has lower density.

The free water begins to move the evaporative free surface at the beginning of drying
and remains the constant rate of drying until the free water movement stops, which is
called to the constant drying rate period or funicular state. After the funicular state, a
drying front recedes toward the interior of wood and the drying rate begin to decrease,
which is called to the falling rate drying period or pendular state.

Figure 5 shows the spatial evolution of moisture content, gas pressure, and temper-
ature distribution during drying. The effect of growth rings on moisture distribution
is evident during drying as expected. The moisture content of earlywood locations
decreases steadily from the beginning of drying but one of latewood locations remains
constant up to 48 hour. The surface moisture content comes to the equilibrium state
after drying time 4 hour but the surface temperature does not come to the equilibrium
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FIGURE 4. Average values(Left) and location values(Right) of Moisture
contents, Temperature and Gas Pressure during 20 hours.
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FIGURE 5. Spatial evolution of moisture content, temperature and gas
pressure distribution during drying
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state and approaches steadily to the dry bulb temperature due to the effect of the
latent heat of evaporation. It exhibits an underpressure during the constant drying
period, followed by a steady increase and overpressure during the falling rate drying
period. The underpressure in wood occurs when the flow of free water moving towards
the surface is greater than the air flow infiltrating from the outside due to lower perme-
ability, in which it may cause the collapse of wood. The temperature begins to increase
up to wet bulb temperature 40°C during the constant rate drying period, followed by
approaching to the dry bulb temperature 60°C. It is noticed that the effect of growth
rings on the temperature gas pressure distributions are not obvious.

5. CONCLUDING REMARKS

A numerical simulation for the process of the wood drying has some of difficulties, for
instance, tightly coupled equations, highly non-linear equations, non-linear boundary
conditions, steep moisture and pressure gradients, highly convective internal gaseous
flows and outer and inner iteration stages make another stumbling block.

In this study we find a appropriate method, so called control volume finite element
method, which is convenient to non-dimensionalise the system of equations, and makes
an unstructured meshing for processing possible. Also it has a number of different
alternatives for the exact shape of CV and is flexible for evaluating fluxes through
faces.

A complete CVFE method is suitable for resolving nonlinear transport equations on
one-dimensional meshes.
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