High-cycle fatigue characteristics of quasi-isotropic CFRP laminates

  • Hosoi, Atsushi (Graduate School of Science and Engineering, Waseda University) ;
  • Arao, Yoshihiko (Graduate School of Science and Engineering, Waseda University) ;
  • Karasawa, Hirokazu (Toshiba Corporation Industrial and Power Systems and Services Company) ;
  • Kawada, Hiroyuki (Department of Mechanical Engineering, Waseda University)
  • Published : 2007.06.01

Abstract

High-cycle fatigue characteristics of quasi-isotropic carbon fiber reinforced plastic (CFRP) laminates [-45/0/45/90]s up to $10^8$ cycles were investigated. To assess the fatigue behavior in the high-cycle region, fatigue tests were conducted at a frequency of 100 Hz, since it is difficult to investigate the fatigue characteristics in high-cycle at 5 Hz. Then, the damage behavior of the specimen was observed with a microscope, soft X-ray photography and a 3D ultrasonic inspection system. In this study, to evaluate quantitative characteristics of both transverse crack propagation and delamination growth in the high-cycle region, the energy release rate associated with damage growth in the width direction was calculated. Transverse crack propagation and delamination growth in the width direction were evaluated based on a modified Paris law approach. The results revealed that transverse crack propagation delayed under the test conditions of less than ${\sigma}_{max}/{\sigma}_b$ = 0.3 of the applied stress level.

Keywords

References

  1. T. K. O'Brien, M. Rigamonti and C. Zanotti, Tension fatigue analysis and life prediction for composite laminates, Int. J. Fatigue 11, 379-393 (1989) https://doi.org/10.1016/0142-1123(89)90177-1
  2. J. Tong, Fatigue crack growth in composite laminates, in: Recent Advances in Fracture, R. K. Mahidhara, A. B. Geltmacher, P.Matic and K. Sadananda (Eds), pp. 251-260. TMS,Warrendale, PA, USA (1997)
  3. J. Tong, Characteristics of fatigue crack growth in GFRP laminates, Internat. J. Fatigue 24, 291-297 (2002) https://doi.org/10.1016/S0142-1123(01)00084-6
  4. S. Kobayashi and N. Takeda, Experimental and analytical characterization of transverse cracking behavior in carbon/bismaleimide cross-ply laminates under mechanical fatigue loading, Composites Part B - Eng 33, 471-478 (2002) https://doi.org/10.1016/S1359-8368(02)00028-8
  5. L. Boniface and S. L. Ogin, Application of the Paris equation to the fatigue growth of transverse ply cracks, J. Compos. Mater. 23, 735-754 (1989) https://doi.org/10.1177/002199838902300706
  6. K. L. Reifsnider and A. Talug, Analysis of fatigue damage in composite laminates, Internat. J. Fatigue 2, 3-11 (1980) https://doi.org/10.1016/0142-1123(80)90022-5
  7. M. Spearing, P. W. R. Beaumont and M. F. Ashby, Fatigue damage mechanics of notched graphite-epoxy laminates, ASTM STP 1110, 617-637 (1991)
  8. Z. Hashin, Analysis of cracked laminates: a variational approach, Mech. Mater. 4, 121-136 (1985) https://doi.org/10.1016/0167-6636(85)90011-0
  9. J. A. Nairn, The strain energy release rate of composite microcracking: a variational approach, J. Compos. Mater. 23, 1106-1119 (1989) https://doi.org/10.1177/002199838902301102
  10. J. A. Nairn, Matrix microcracking composites, in: Polymer Matrix Composites, R. Talreja and J.-A. E. Manson (Eds), pp. 403-432. Elsevier, Amsterdam (2000)
  11. L. N. McCartney, Stress transfer mechanics for ply cracks in general symmetric laminates, NPL Report CMMT (A) 50, 1-47 (1996)
  12. P. Gudmundson and W. Zang, An analytic model for thermoelastic properties of composite laminates containing transverse matrix cracks, Internat. J. Solids Struct. 30, 3211-3231 (1993) https://doi.org/10.1016/0020-7683(93)90110-S
  13. J. E. Masters and K. L. Reifsnider, An investigation of cumulative damage development in quasiisotropic graphite/epoxy laminates, ASTM STP 775, 40-62 (1982)
  14. S. Liu and J. A. Nairn, Fracture mechanics analysis of composite microcracking: Experiment results in fatigue, in: Proc. Fifth Tech. Conf. Compos. Mater., Michigan, pp. 287-295. American Society for Composites (1990)
  15. N. Takeda, S. Kobayashi, S. Ogihara and A. Kobayashi, Effects of toughened interlaminar layers of fatigue damage progress in quasi-isotropic CFRP laminates, Internat. J. Fatigue 21, 235-242 (1999) https://doi.org/10.1016/S0142-1123(98)00072-3
  16. T. Yokozeki, T. Aoki and T. Ishikawa, Fatigue growth of matrix cracks in the transverse direction of CFRP laminates, Compos. Sci. Technol. 62, 1223-1229 (2002) https://doi.org/10.1016/S0266-3538(02)00068-4
  17. A. Hosoi, H. Kawada and H. Yoshino, Fatigue characteristics of quasi-isotropic CFRP laminates subjected to variable amplitude cyclic two-stage loading, Internat. J. Fatigue 28, 1284-1289 (2006) https://doi.org/10.1016/j.ijfatigue.2006.02.039
  18. J. A. Nairn, Fracture mechanics of composite with residual thermal stresses, J. Appl. Mech. 64, 804-810 (1997) https://doi.org/10.1115/1.2788985
  19. J. Tong, F. J. Guild, S. L. Ogin and P. A. Smith, On matrix crack growth in quasi-isotropic laminates-I. Experimental investigation, Compos. Sci. Technol. 57, 1527-1535 (1997) https://doi.org/10.1016/S0266-3538(97)00080-8
  20. T. K. O'Brien, Characterization of delamination onset and growth in a composite laminate, ASTM STP 775, 140-167 (1982)