References
- K. Mohanty, M. Misra and L. T. Drzal, Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world, J. Polym. Environ. 10, 19 (2002). https://doi.org/10.1023/A:1021013921916
- P. Wambua, J. Ivens and I. Verpoest, Natural fibers: can they replace glass in fiber reinforced plastics?, Compos. Sci. Technol. 63, 1259-1264 (2003). https://doi.org/10.1016/S0266-3538(03)00096-4
- M. A. Khan, M. M. Hassan and L. T. Drzal, Effect of 2-hydroxyethyl methacrylate (HEMA) on the mechanical and thermal properties of jute-polycarbonate composite, Composites: Part A 36, 71-81 (2005). https://doi.org/10.1016/S1359-835X(04)00178-2
- Y. Pang, D. Cho, S. O. Han and W. H. Park, Interfacial shear strength and thermal properties of electron beam-treated henequen fiber reinforced unsaturated polyester composites, Macromol. Res. 13, 453-459 (2005). https://doi.org/10.1007/BF03218480
- J. M. Seo, D. Cho, W. H. Park, S. O. Han, T. W. Hwang, C. H. Choi, S. J. Jung and K. H. Lee, Effect of fiber surface treatments on the interfacial and mechanical properties of natural fiber-reinforced poly(lactic acid) biocomposites, in: Proc. (CD) Soc. Adv. Mater. Proc. Eng- SAMPE'06, April 30-May 4, Long Beach, CA, USA (2006).
- A. K. Mohanty, M. Misra and L. T. Drzal, Surface modifications of natural fibers and performance of the resulting biocomposites: an overview, Composite Interfaces 8, 313-343 (2001). https://doi.org/10.1163/156855401753255422
- D. Cho, Y. Pang, S. O. Han, W. H. Park and L. T. Drzal, Interfacial shear strength and dynamic mechanical properties of thermoplastic and thermosetting polyester green composites reinforced with henequen fibers irradiated by electron beam, in: Proc. 3rd Int. Workshop on Green Composites-IWGC-3, March 16-17, Kyoto, Japan, pp. 16-21 (2005).
- K. Oksman,M. Skrifvars and J.-F. Selin, Natural fibers as reinforcement in polylactic acid (PLA) composites, Compos. Sci. Technol. 63, 1317-1324 (2003). https://doi.org/10.1016/S0266-3538(03)00103-9
- J. Lunt, Large-scale production, properties and commercial applications of polylactic acid polymers, Polym. Degrad. Stabil. 59, 145-152 (1998). https://doi.org/10.1016/S0141-3910(97)00148-1
- V. G. Geethamma, R. Joseph and S. Thomas, Short coir fiber-reinforced natural rubber composites: effects of fiber length, orientation, and alkali treatment, J. Appl. Polym. Sci. 55, 583-594 (1995). https://doi.org/10.1002/app.1995.070550405
- L. Y. Mwaikambo and M. P. Ansell, The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement, Die Angew Makromol. Chem. 272, 108-116 (1999). https://doi.org/10.1002/(SICI)1522-9505(19991201)272:1<108::AID-APMC108>3.0.CO;2-9
- S. G. Lee, S.-S. Choi, W. H. Park and D. Cho, Characterization of surface modified flax fibers and their biocomposites with PHB, Macromol. Symp. 197, 89-99 (203).
- S. O. Han, D. Cho, W. H. Park and L. T. Drzal, Henequen/poly(butylene succinate) biocomposites: electron beam irradiation effects on henequen fiber and the interfacial properties of biocomposites, Composite Interfaces 13, 231-247 (2006). https://doi.org/10.1163/156855406775997123
- R. P. Brown, (Ed.), Handbook of Plastics Test Methods, 3rd edn, Ch. 8. Longman Scientific and Technical, London, UK (1988).
- D. Cho, S. Lee, G. Yang, H. Fukushima and L. T. Drzal, Dynamic mechanical and thermal properties of phenylethynyl-terminated polyimide composites reinforced with expanded graphite nanoplatelets, Macromol. Mater. Eng. 290, 179-187 (2005). https://doi.org/10.1002/mame.200400281