Papyrus reinforced poly(L-lactic acid) composite

  • Nishino, Takashi (Department of Chemical Science and Engineering, Faculty of Engineering, Kobe University) ;
  • Hirao, Koichi (Department of Chemical Science and Engineering, Faculty of Engineering, Kobe University) ;
  • Kotera, Masaru (Department of Chemical Science and Engineering, Faculty of Engineering, Kobe University)
  • Published : 2007.12.01

Abstract

Mechanical reinforcement of an all-sustainable composite, composed of papyrus stem-milled particles as reinforcement and poly-L-lactic acid (PLLA) resin as matrix, was investigated. The papyrus particles (average diameter of $70{\mu}m$) could be well dispersed in PLLA resin up to 50 wt% without any surface modification. Young's modulus of the composite was 4.2 GPa at 50 wt% of the papyrus content. This is a two-fold increment in modulus as compared to that of the PLLA matrix. The tensile strength of the composite was almost constant around 48 MPa irrespective of the papyrus content. Temperature dependence of the storage modulus demonstrated that the incorporation of papyrus restricts the large drop in the modulus above the glass transition of PLLA.

Keywords

References

  1. C. Baillie (Ed.), Green Composites. Woodhead Publishing Ltd., Cambridge, UK (2004).
  2. A. K. Bledzki and J. Gassan, Composites reinforced with cellulose based fibres, Prog. Polym. Sci. 24, 221 (1999). https://doi.org/10.1016/S0079-6700(98)00018-5
  3. T. Nishino, K. Hirao, M. Kotera, K. Nakamae and H. Inagaki, Kenaf reinforced biodegradable composite, Compos. Sci. Technol. 62, 1281 (2003).
  4. N. Lewis, Papyrus in Classical Antiquity. Oxford University Press, London, UK (1974).
  5. J. Kyambadde, F. Kansiime, L. Gumaelius and G. Dalhammar, A comparative study of Cyperus papyrus and Miscanthidium violaceum-based constructed wetlands for wastewater treatment in a tropical climate, Water Research 38, 475 (2004). https://doi.org/10.1016/j.watres.2003.10.008
  6. K. Abe and Y. Ozaki, Comparison of useful terrestrial and aquatic plant species for removal of nitrogen and phosphorus from domestic wastewater, Soil Sci. Plant Nutr. 44, 599 (1998). https://doi.org/10.1080/00380768.1998.10414483
  7. P. D. Moor, Exploiting papyrus, Nature 284, 510 (1980).
  8. E. Pfundel, E. Nagal and A. Meister, Analyzing the light energy distribution in the photosynthetic apparatus of C4 plants using highly purified mesophyll and bundle-sheath thylakoids, Plant Physiol. 112, 1055 (1996).
  9. H. Tsuji and Y. Ikada, Properties and morphologies of poly(L-lactide): 1. Annealing condition effects on properties and morphologies of poly(L-lactide), Polymer 36, 2709 (1995). https://doi.org/10.1016/0032-3861(95)93647-5
  10. J. P. Pennings, H. Dijkstra and A. J. Pennings, Preparation and properties of absorbable fibres from L-lactide copolymers, Polymer 34, 942 (1993).
  11. D. Sawai, K. Takahashi, A. Sasashige, T. Kanamoto and S. H. Hyon, Preparation of oriented $\beta$-form poly(L-lactic acid) by solid-state coextrusion: effect of extrusion variables, Macromolecules 36, 3601 (2003). https://doi.org/10.1021/ma030050z
  12. N. Ogata, G. Jimenez, H. Kawai and T. Ogihara, Structure and thermal/mechanical properties of poly(L-lactide)-clay blend, J. Polym. Sci. Polym. Phys. 35, 389 (1997). https://doi.org/10.1002/(SICI)1099-0488(19970130)35:2<389::AID-POLB14>3.0.CO;2-E
  13. S. Sinha Ray, P. Maiti, M. Okamoto, K. Yamada and K. Ueda, New polylactide/layered silicate nanocomposites. 1. Preparation, characterization, and properties, Macromolecules 35, 3104 (2002). https://doi.org/10.1021/ma011613e
  14. K. Hamaguchi and M. Iwasaki, Chemical pulping of Japanese nonwood plants and these sheet properties, Selected Papers for the 10th Anniversary of Kobe Papyrus Institute, p. 75 (2001).
  15. H. M. Smallwood, Limiting law of the reinforcement of rubber, J. Appl. Phys. 15, 758 (1944). https://doi.org/10.1063/1.1707385
  16. L. Leider and R. T. Woodhams, The strength of polymeric composites containing spherical fillers, J. Appl. Polym. Sci. 18, 1639 (1974). https://doi.org/10.1002/app.1974.070180606
  17. L. E. Nielsen, Simple theory of stress-strain properties of filled polymers, J. Appl. Polym. Sci. 10, 97 (1966). https://doi.org/10.1002/app.1966.070100107
  18. S. Takase and N. Shiraishi, Studies on composites from wood and polypropylenes. II, J. Appl. Polym. Sci. 37, 645 (1989). https://doi.org/10.1002/app.1989.070370305
  19. K. W. Allen, Papyrus—some ancient problems in bonding, Int. J. Adhes. Adhes. 16, 47 (1996). https://doi.org/10.1016/0143-7496(96)88486-7