Studies on the Asymmetric Cell Division During Oocyte Maturation using Mouse Models - Role of Formin-2 -

생쥐모델을 이용한 비대칭적 난자 분열의 이해 - Formin-2의 역할 -

  • Lim, Hyun-Jung (Department of Biomedical Science & Technology, Institute of Biomedical Science & Technology, Konkuk University)
  • 임현정 (건국대학교 의생명과학연구원 의생명과학과)
  • Published : 2007.06.30

Abstract

Keywords

References

  1. Buccione R, Schroeder AC, Eppig JJ. Interactions between somatic cells and germ cells throughout mammalian oogenesis. Biol Reprod 1990; 43: 543-7 https://doi.org/10.1095/biolreprod43.4.543
  2. Wassarman PM, Albertini DE The mammalian ovum. In: Knobil E, Neill JD, editors. The Physiology of Reproduction, 2nd Edition. New York, New York: Raven Press; 1994. p.79 -122
  3. Eppig JJ. Intercommunication between mammalian oocytes and companion somatic cells. Bioessays 1991; 13: 569-74 https://doi.org/10.1002/bies.950131105
  4. Matzuk MM. Revelations of ovarian follicle biology from gene knockout mice. Mol Cell Endocrinol 2000; 163: 61-6 https://doi.org/10.1016/S0303-7207(99)00241-5
  5. Johnson MH, Everitt BJ. Ovarian function. Essential reproduction. 4th ed. Cambridge: Blackwell Science; 1995; 60-78
  6. Jorgez CJ, Lin YN, Matzuk MM. Genetic manipulations to study reproduction. Mol Cell Endocrinol 2005; 234: 127-35 https://doi.org/10.1016/j.mce.2004.08.015
  7. Matzuk MM, Lamb DJ. Genetic dissection of mammalian fertility pathways. Nat Cell Biol 2002; 4 Suppl: s41-9
  8. Dierich A, Sairam MR, Monaco L, Fimia GM, Gansmuller A, LeMeur M, et aL Impairing follicle-stimulating hormone (FSH) signaling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proc Natl Acad Sci USA 1998; 95: 13612-7 https://doi.org/10.1073/pnas.95.23.13612
  9. Abel MH, Wootton AN, Wilkins V, Huhtaniemi I, Knight PG, Charlton HM. The effect of a null mutation in the folliclestimulating hormone receptor gene on mouse reproduction. Endocrinology 2000; 141: 1795-803 https://doi.org/10.1210/en.141.5.1795
  10. Lei ZM, Mishra S, Zou W, Xu B, Foltz M, Li X, et al. Targeted disruption of luteinizing hormone/human chorionic gonadotropin receptor gene. Mol Endocrinol 2001; 15: 184 -200 https://doi.org/10.1210/me.15.1.184
  11. Zhang FP, Poutanen M, Wilbertz J, Huhtaniemi I. Normal prenatal but arrested postnatal sexual development of luteinizing hormone receptor knockout (LuRKO) mice. Mol Endocrinol 2001; 15: 172-83 https://doi.org/10.1210/me.15.1.172
  12. Fisher CR, Graves KH, Parlow AF, Simpson ER. Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp 19 gene. Proc Natl Acad Sci USA 1998; 95: 6965-70 https://doi.org/10.1073/pnas.95.12.6965
  13. Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 1996; 383: 531-5 https://doi.org/10.1038/383531a0
  14. Sicinski P, Donaher JL, Geng Y, Parker SB, Gardner H, Park MY, et al. Cyelin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature 1996; 384: 470-4 https://doi.org/10.1038/384470a0
  15. Tong W, Kiyokawa H, Soos TJ, Park MS, Soares VC, Manova K, et al. The absence of p27Kip1, an inhibitor of G1 cyclindependent kinases, uncouples differentiation and growth arrest during the granulosa->luteal transition. Cell Growth Differ 1998; 9: 787-94
  16. Moons DS, Jirawatnotai S, Tsutsui T, Franks R, Parlow AF, Hales DB, et al. Intact follicular maturation and defective luteal function in mice deficient for cyclin-dependent kinase-4. Endocrinology 2002; 143: 647-54 https://doi.org/10.1210/en.143.2.647
  17. Lim H, Paria BC, Das SK, Dinchuk JE, Langenbach R, Trzaskos M, et al. Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell 1997; 91: 197-208 https://doi.org/10.1016/S0092-8674(00)80402-X
  18. Matsumoto H, Ma W, Smalley W, Trzaskos J, Breyer RM, Dey SK. Diversification of cyclooxygenase-2-derived prostaglandins in ovulation and implantation. Biol Reprod 2001; 64: 1557-65 https://doi.org/10.1095/biolreprod64.5.1557
  19. Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA, et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev 1995; 9: 2266-78 https://doi.org/10.1101/gad.9.18.2266
  20. Leonardsson G, Jacobs MA, White R, Jeffery R, Poulsom R, Milligan S, et al. Embryo transfer experiments and ovarian transplantation identity the ovary as the only site in which nuclear receptor interacting protein 1/RIP140 action is crucial for female fertility. Endocrinology 2002; 143: 700-7 https://doi.org/10.1210/en.143.2.700
  21. Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2001; 2: 280-91 https://doi.org/10.1038/35066065
  22. Kaufman MH. New insights into triploidy and tetraploidy, from an analysis of model systems for these conditions. Hum Reprod 1991; 6: 8-16 https://doi.org/10.1093/humrep/6.suppl_1.8
  23. Faix J, Grosse R. Staying in shape with formins. Dev Cell 2006; 10: 693-706 https://doi.org/10.1016/j.devcel.2006.05.001
  24. Yasuda S, Oceguera-Yanez F, Kato T, Okamoto M, Yonemura S, Terada Y, et al. Cdc42 and mDia3 regulate microtubule attachment to kinetochores. Nature 2004; 428: 767-71
  25. Higgs lIN. Formin proteins: a dornain-based approach. Trends Biochem Sci 2005; 30: 342-53 https://doi.org/10.1016/j.tibs.2005.04.014
  26. Woychik RP, Stewart TA, Davis LG, D'Eustachio P, Leder P. An inherited limb deformity created by insertional mutagenesis in a transgenic mouse. Nature 1985; 318: 36-40. https://doi.org/10.1038/318036a0
  27. Woychik RP, Maas RL, Zeller R, Vogt TF, Leder P. 'Formins': proteins deduced from the alternative transcripts of the limb deformity gene. Nature 1990; 346: 850-3 https://doi.org/10.1038/346850a0
  28. Imamura H, Tanaka K, Hihara T, Umikawa M, Kamei T, Takahashi K, et al. Bnilp and Bnrlp: downstream targets of the Rho family small G-proteins which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae. EMBO J 1997; 16: 2745-55 https://doi.org/10.1093/emboj/16.10.2745
  29. Leader B, Leder P. 2000 Formin-2, a novel formin homology protein of the cappuccino subfamily, is highly expressed in the developing and adult central nervous system. Mech Dev 93: 221-31 https://doi.org/10.1016/S0925-4773(00)00276-8
  30. Leader B, Lim H, Carabatsos MJ, Harrington A, Ecsedy J, Pellman D, et al. Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes. Nat Cell Biol 2002; 4: 921-8 https://doi.org/10.1038/ncb880
  31. Dumont J, Million K, Sunderland K, Rassinier P, Lim H, Leader B, et al. Formin-2 is required for spindle migration and for the late steps of cytokinesis in mouse oocytes. Dev Biol 2007; 301: 254-65 https://doi.org/10.1016/j.ydbio.2006.08.044
  32. Emmons S, Phan H, Calley J, Chen W, James B, Manseau L. Cappuccino, a Drosophila maternal effect gene required for polarity of the egg and embryo, is related to the vertebrate limb deformity locus. Genes Dev 1995; 9: 2482-94 https://doi.org/10.1101/gad.9.20.2482
  33. Na J, Zernicka-Goetz M. Asymmetyric positioning and organization of the meiotic spindle of mouse oocytes requires CDC42 function. Curr Biol 2006; 16: 1249-54 https://doi.org/10.1016/j.cub.2006.05.023
  34. Wood JR, Dumesic DA, Abbott DH, Strauss JF, III. Molecular abnormalities in oocytes from women with polycystic ovary syndrome revealed by microarray analysis. J Clin Endocrinol Metab 2007; 92: 705-13 https://doi.org/10.1210/jc.2006-2123
  35. Ryley DA, Wu HR, Leader B, Zimon A, Reindollar RH, Gray MR. Characterization and mutation analysis of the human FORMlN-2 (FMN2) gene in women with unexplained infertility. Fertil Steril 2005; 83: 1363-71 https://doi.org/10.1016/j.fertnstert.2004.10.051