사람의 지방 및 제대에서 유래된 유사중간엽 줄기세포로부터 심근세포로의 분화 유도

Cardiomyogenic Potential of Human Adipose Tissue and Umbilical Cord Derived-Mesenchymal Like Stem Cells

  • 박세아 (서울여자대학교 자연과학대학 생명공학과) ;
  • 강현미 (서울여자대학교 자연과학대학 생명공학과) ;
  • 김은수 (서울여자대학교 자연과학대학 생명공학과) ;
  • 김진영 (서울여자대학교 자연과학대학 생명공학과) ;
  • 김해권 (서울여자대학교 자연과학대학 생명공학과)
  • Park, Se-Ah (Department of Biotechnology, College of Natural Sciences, Seoul Women's University) ;
  • Kang, Hyeon-Mi (Department of Biotechnology, College of Natural Sciences, Seoul Women's University) ;
  • Kim, Eun-Su (Department of Biotechnology, College of Natural Sciences, Seoul Women's University) ;
  • Kim, Jin-Young (Department of Biotechnology, College of Natural Sciences, Seoul Women's University) ;
  • Kim, Hae-Kwon (Department of Biotechnology, College of Natural Sciences, Seoul Women's University)
  • 발행 : 2007.12.31

초록

목 적: 사람의 HAD와 HUC를 심근세포로 분화 유도하고자 하였다. 연구방법: 사람의 HAD와 HUC를 분리하여 5-azacytidine을 24시간 처리하고 여러 가지 BMP와 FGF을 첨가하여 배양하였다. 또한 HUC은 BMP와 FGF와 함께 activin A 또는 TGF-$\beta$1 또는 Wnt inhibitor를 첨가하여 배양한 후 심근세포 특이 유전자의 발현을 조사하였다. 결 과: HAD를 5-azacytidine 처리하고 기본배양액에서 4주 동안 배양하였을 때 TnT 유전자가 새로이 발현하였으며 Cmlc1과 kv4.3의 발현 양이 증가하였다. 5-azacytidine 처리 후에 BMP-4와 함께 FGF-4 (B4/F4) 또는 FGF-8 (B4/F8)을 첨가하여 배양하였을 때는 $\beta$-MHC 유전자 발현이 새로이 유도되었으며, Cmlc1, TnT, TnI 그리고 Kv4.3 유전자 발현 양이 더 많이 증가하였다. HUC은 5-azacytidine 및 BMP와 FGF 처리에 의해 유전자 발현 변화가 없었다. 그러나 BMP와 FGF와 함께 activin A 또는 TGF-$\beta$1을 첨가하여 배양하였을 때, BMP-2와 FGF-8 (B2/F8)을 첨가하여 배양한 세포에서 $\beta$-MHC 발현이 새로이 유도되었으며 $\alpha$-CA, TnT 그리고 Kv4.3 유전자의 발현이 증가하였다. 또한 BMP와 FGF와 함께 Wnt inhibitor를 처리하여 1주 동안 배양하였을 때 Cinlc1 유전자 발현이 새로이 유도되었으며 $\alpah$-CA, TnT, TnI 그리고 Kv4.3의 발현이 증가되었다. 결 론: HAD는 BMP와 FGF 처리에 의해 심근세포 특이 유전자의 발현증가를 유도할 수 있었으며 HUC는 BMP와 FGF와 함께 activin A 또는 TGF-$\beta$1 또는 Wnt inhibitor를 처리함으로써 심근세포 특이 유전자의 발현증가를 유도할 수 있었다. 따라서 HAD와 HUC는 심장질환 치료를 목적으로 하는 세포 치료에 이용될 수 있을 것으로 사료된다.

Objectives: In the present study, we examined the differentiation potential of human adipose-(HAD) and human umbilical cord-derived mesenchymal like stem cells (HUC) into cardiomyocytes. Methods: Cells were initially exposed to 5-azacytidine for 24h cells and then were cultivated in the presence or absence of activin A, TGF-$\beta$1, or Wnt inhibitor with various combinations of BMP and FGF. Assessment of cardiomyogenic differentiation was made upon the expression of cardiomyocyte-specific genes using RT-PCR. Results: HAD that cultivated in control medium for 4 weeks after 5-azacytidine expose showed new expression of TnT gene and increased expression of Cmlc1 and kv4.3 genes. However, HAD cultivated in the presence of combinations of BMP-4/FGF-4 (B4/F4) and BMP-4/FGF-8 (B4/F8) showed new expression of $\beta$-MHC gene and more increased expression of Cmlc1, TnT, TnI, Kv4.3 genes. Significantly enhanced expression of Cmlc1, TnT, and Kv4.3 genes were also observed compared to that cultivated in the control medium. Treatment of HUC with either 5-azacytidine or combinations of BMP and FGF did not affect the expression profile of these genes. However, when activin A or TGF-$\beta$1 was present in addition to the BMP-2/FGF-8 (B2/F8) after 5-azacytidine exposure, HUC exhibited new expression of $\beta$-MHC gene and increased expression of $\alpha$-CA, TnT and Kv4.3 genes. When Wnt inhibitor was present in addition to BMP and FGF, HUC showed new expression of Cmlc1 gene and increased expression of $\alpha$-CA, TnT, TnI and Kv4.3 genes. Conclusions: Based on these observations, it is suggested that HAD and HUC could differentiate into cardiomyocytes which might be used as therapeutic cells for the heart diseases.

키워드

참고문헌

  1. Soonpaa MH, Field LJ. Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. Am J Physiol 1997; 272: 220-6
  2. Pasumarthi KB, Field LJ. Cardiomyocyte cell cycle regulation. Circ Res. 2002 May 31; 90: 1044-54
  3. Rubart M, Field LJ. Cardiac regeneration: repopulating the heart. Annu Rev Physiol 2006; 68: 29-49 https://doi.org/10.1146/annurev.physiol.68.040104.124530
  4. Zimmermann WH, Eschenhagen T. Embryonic stem cells for cardiac muscle engineering. Trends Cardiovasc Med 2007; 17: 134-40 https://doi.org/10.1016/j.tcm.2007.02.007
  5. Dirnmeler S, Zeiher AM, Schneider MD. Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest 2005; 115: 572-83 https://doi.org/10.1172/JCI200524283
  6. Murry CE, Field LJ, Menasche P. Cell-based cardiac repair: reflections at the 10-year point. Circulation 2005; 15: 3174-83
  7. Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 1966; 16: 381-90
  8. Prindull G, Prindull B, Meulen N. Haematopoietic stem cells (CFUc) in human cord blood 1978; 67: 413-6
  9. Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, et al. Mesecnchymal precursor cells in the blood of normal individuals. Arthritis Res 2000; 2: 477-88 https://doi.org/10.1186/ar130
  10. Zuk PA, ZhuM, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13: 4279-95 https://doi.org/10.1091/mbc.E02-02-0105
  11. Toda A, Okabe M, Yoshida T, Nikaido T. The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci 2007; 105: 215-28 https://doi.org/10.1254/jphs.CR0070034
  12. In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FH, Willernze R, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 2003; 102: 1548-9 https://doi.org/10.1182/blood-2003-04-1291
  13. Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 2003; 21: 105-10 https://doi.org/10.1634/stemcells.21-1-105
  14. Fukuchi Y, Nakajima H, Sugiyama D, Hirose I, Kitamura T, Tsuji K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 2004; 225: 649-58
  15. He JQ, Ma Y, Lee Y, Thomson JA, Karnp TJ. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res 2003; 93: 32-9 https://doi.org/10.1161/01.RES.0000080317.92718.99
  16. Leor J, Gerecht S, Cohen S, Miller L, Holbova R, Ziskind A, et al. Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart 2007; 93: 1278-84 https://doi.org/10.1136/hrt.2006.093161
  17. Xu C, Police S, Rao N, Carpenter MK. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 2002; 9: 501-8
  18. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 2007; 25: 1015-24 https://doi.org/10.1038/nbt1327
  19. Xu W, Zhang X, Qian H. Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp Biol Med 2004; 229: 623-31 https://doi.org/10.1177/153537020422900706
  20. Kadivar M, Khatami S, Mortazavi Y, Shokrgozar MA, Taghikhani M, Soleimani M. In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells. Bio Chem Biophys Res Commun 2006; 340: 639-47 https://doi.org/10.1016/j.bbrc.2005.12.047
  21. Balana B, Nicoletti C, Zahanich I, Graf EM, Christ T, Boxberger S, et al. 5-Azacytidine induces changes in electrophysiological properties of human mesenchymal stem cells. Cell Res 2006; 16: 949-60 https://doi.org/10.1038/sj.cr.7310116
  22. Zhao P, Ise H, Hongo M, Ota M, Konishi I, Nikaido T. Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation 2005; 79: 528-35 https://doi.org/10.1097/01.TP.0000149503.92433.39
  23. Shim WS, Jiang S, Wong P, Tan J, Chua YL, Tan YS, et at. Ex vivo differentiation of human adult bone marrow stem cells into cardiomyocyte-like cells. Biochem Biophys Res Commun 2004; 324: 481-8 https://doi.org/10.1016/j.bbrc.2004.09.087
  24. Andree B, Duprez D, Vorbusch B, Arnold HH, Brand T. BMP-2 induces ectopic expression of cardiac lineage markers and interferes with somite formation in chicken embryos. Mech Dev 1998; 70: 119-31 https://doi.org/10.1016/S0925-4773(97)00186-X
  25. Ladd AN, Yatskievych TA, Antin PB. Regulation of avian cardiac myogenesis by activin/TGFbeta and bone morphogenetic proteins. Dev Biol 1998; 204: 407-19 https://doi.org/10.1006/dbio.1998.9094
  26. He X. A Wnt-Wnt situation. Dev Cell 2003; 4: 791-7 https://doi.org/10.1016/S1534-5807(03)00165-5
  27. Dale TC. Signal transduction by the Wnt family of ligands. Biochem J 1998; 329: 209-23 https://doi.org/10.1042/bj3290209
  28. Solloway MJ, Harvey RP. Molecular pathways in myocardial development: a stem cell perspective. Cardiovasc Res 2003; 58: 264-77 https://doi.org/10.1016/S0008-6363(03)00286-4
  29. Tsuji-Takayama K, Inoue T, Ijiri Y, Otani T, Motoda R, Nakamura S, et at. Demethylating agent, 5-azacytidine, reverses differentiation of embryonic stem cells. Biochem Biophys Res Commun 2004; 323: 86-90 https://doi.org/10.1016/j.bbrc.2004.08.052
  30. Ye NS, Zhang RL, Zhao YF, Feng X, Wang YM, Luo GA. Effect of 5-azacytidine on the protein expression of porcine bone marrow mesenchymal stem cells in vitro. Genomics Proteomics Biolnformatics. 2006; 4: 18-25 https://doi.org/10.1016/S1672-0229(06)60012-0
  31. Bin Z, Sheng LG, Gang ZC, Hong J, Jun C, Bo Y, et at. Efficient cardiomyocyte differentiation of embryonic stem cells by bone morphogenetic protein-2 combined with visceral endoderm-like cells. Cell Biol Int 2006; 30: 769-76 https://doi.org/10.1016/j.cellbi.2006.05.011
  32. Wang YX, Qian LX, Liu D, Yao LL, Jiang Q, Yu Z, et al. Bone morphogenetic protein-2 acts upstream of myocyte-specific enhancer factor 2a to control embryonic cardiac contractility. Cardiovasc Res 2007; 74: 290-303 https://doi.org/10.1016/j.cardiores.2007.02.007
  33. Barron M, Gao M, Lough J. Requirement for BMP and FGF signaling during cardiogenic induction in non-precardiac mesoderm is specific, transient, and cooperative. Dev Dyn 2000; 218: 383-93 https://doi.org/10.1002/(SICI)1097-0177(200006)218:2<383::AID-DVDY11>3.0.CO;2-P
  34. Alsan BH, Schultheiss TM. Regulation of avian cardiogenesis by FGF8 signaling. Development 2002; 129: 1935-43
  35. Saga Y, Kitajima S, Miyagawa-Tomita S. Mespl expression is the earliest sign of cardiovascular development. Trends Cardiovasc Med. 2000; 10: 345-52 https://doi.org/10.1016/S1050-1738(01)00069-X
  36. Ilagan R, Abu-Issa R, Brown D, Yang YP, Jiao K, Schwartz RJ, et al. Fgf8 is required for anterior heart field development. Development. 2006; 133: 2435-45 https://doi.org/10.1242/dev.02408
  37. Koyanagi M, Bushoven P, Iwasaki M, Urbich C, Zeiher AM, Dimmeler S. Notch signaling contributes to the expression of cardiac markers in human circulating progenitor cells. Circ Res 2007; 101: 1139-45 https://doi.org/10.1161/CIRCRESAHA.107.151381
  38. Terami H, Hidaka K, Katsumata T, Iio A, Morisaki T. Wntll facilitates embryonic stem cell differentiation to Nkx2.5positive cardiomyocytes. Biochem Biophys Res Commun. 2004; 325: 968-75 https://doi.org/10.1016/j.bbrc.2004.10.103
  39. Pandur P, Lasche M, Eisenberg LM, Kiihl M. Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature 2002; 418: 636-41 https://doi.org/10.1038/nature00921