국 제 표 준 화 회 의 참 가 보 고

ITU-R WP8F(IMT-2000 and IMT-Advanced) 19차

송 주 연 삼성전자 책임연구원 임 **은 택** 삼성전자 책임연구원

박 정 식 TTA 표준화본부 전파방송팀 차장

• 일시 : 2006. 5. 2(수) ~ 5. 10(수)

장소 : 프랑스 비아리츠참석자 : 32개국 220명

- 국내 참석자: MIC. TTA, ETRI, SKT, KT, 삼성전자, LGT 등 총 23여 명

• 주요의제

- IMT-Advanced 표준 개발 원칙/일정 논의

- IMT-Advanced 주파수 소요량 산출 보고서 완료 및 후보 대역 논의

- 2.5GHz 공유 연구 논의

1. Executive Summary

- IMT-Advanced(4G) 표준에 대한 원칙/방향 논의
- 기존 IMT-2000 표준화 진행방법을 기준으로 입장 차이
- 기존 과정 준수 (유럽/한국/일본) vs 시장자율/기 술 중립 접근 (미국/영국) 대립
- 20차 회의('06. 8월) 완료 예정
- IMT-Advanced 최종 주파수 소요량 산출
- 최소 1280MHz IMT용 주파수 소요량 도출, 한국/일 본/CEPT의 경우 High market size case로 1720 MHz 소요량을 도출, 보고서에 포함

- IMT-Advanced 후보 대역 및 대역별 공유 연구
- 3.4 4.2/4.4 5.0GHz FSS(고정위성)과 공유 연구
- 공유 불가 입장(룩셈부르크, Immarsat, Panamsat Europe등) 대 지형 특성 등을 고려할 경우 제한적으로 공유가 가능하다는 입장(한국, 프랑스, 일본 등) 대립
- 개도국을 위한 저대역 확보 필요성은 모두 공감하나, 국가별 대역 차이가 존재
- 미국, 중국, 러시아 등 450-470MHz 및 600-800MHz대 유럽. 아프리카 등 470 - 600MHz
- WRC-07을 통한 추가 대역 활용 의견 대립
- 기술 중립적 활용 vs IMT 용도로 규정 vs IMT-2000/IMT-Advanced 대역 부리

- 2.5GHz 대역 WiMAX IMT-2000/UMTS 공유연구
- 2.5GHz 대역 nomadic BWA & IMT-2000 공유 연구 차기 회의 완료 예정, 이후 Mobile BWA & IMT-2000 공유 연구에 대해 논의 가능

2. WG 별 주요 내용

2.1 Service Working Group

2,1,1 IMT-Advanced 표준 개발 원칙/일정 논의

WRC-07이전 IMT-Advanced 표준화 진행원칙에 대한 Resolution 문서를 차기 회의까지 완성하기로 합의하였다. 금번 회의의 주요 합의내용은 아래와 같다.

- IPR Policy는 기존 ITU의 policy 준수
- 기술 제안 주체는 기존 ITU member를 기준으로 하되, 이외 EO(External Organization) 제안도 배제하지 않음
- 제안된 기술에 대해서는 evaluation 과정시 동등한 기회 부여
- 표준화 이후 개발되는 새로운 기술에 대해서도 IMT-Advanced 표준으로 포함 가능함(단, 필요시 관련 권 고안 수정 가능)
- Evaluation Criteria 개발 및 Evaluation은 ITU 담당: Evaluation 관련, 기존 IMT-2000 과정시와 유사한 ITU 역할 인정

본 의제에 대한 쟁점 사항으로는 Consensus building phase의 목적에 대해 이견차이를 좁히지 못함에 따라 차기회의시 주요 논의가 예상되며, Consensus building 과정은 기술간 commonality/harmonization을 유지하기 위한

과정으로 도입되었으며, IMT-2000시에는 Radio Interface 추가시 기존 IMT-2000 기술의 기득권 보장 방법으로 활용되었다. 유럽/일본/한국은 Consensus building 과정에서 Radio interface 개수를 제한, ITU를 통한 Harmonization 선호하였으며, 미국의 경우 Harmonization은 필요하지만, 개수 제한은 반대, 영국의경우 시장자율에 맡기고, Consensus building 과정을 제외할 것을 주장하였다.

2.1.2 Market SWG(Sub Working Group) (서비스 권고안)

본 권고안은 IMT-2000및 IMT-Advanced가 제공하는 서비스의 high level requirement을 작성하고자 하는 것으로 2007년 5월 완성 예정이다. 금번 회의 중 Structure와 contents 관련 논의를 진행하였다.

2.2 Spectrum Working Group

2.2.1 Spectrum Bands SWG(후보 대역 논의)

- 후보 대역 보고서(Candi Report) 작성

4500-4990MHz 대역 관련, 실제 확정된 계획없이 FSS사용을 주장하는 국가들의 의견은 Candi 보고서가 아닌 다른 문서(예:Adv/Disadvantage보고서)에 추가하는 것으로 합의하였다. 각 대역별 의견 중 주관적 의견이나 기타보고서에 적합하지 않은 내용의 경우, 보고서 본문에서 삭제하거나 다른 문서에 추가하는 것을 검토하기로 하였으며, 본 사항에 대한 심도있는 논의를 위해 차기 회의에 앞서 2일간 interim 회의를 개최하기로 결정하였다(8. 21. ~ 8. 22, 덴버). 각 국가별 후보 대역으로 선호하는 내역은 다음과 같다.

후보 대역	주요 선호국	비고	
450-470MHz	미국, 동유럽국, 일부 남미국가 지지	기존 PMR 대체, 저비용/큰 커버리지 용	
470-600MHz	유럽 일부(UMTS Forum)	저비용/커버리지, 방송 공유 문제	
470-806/862MHz	미국, 캐나다, 중국, 한국 등	휴대 방송과 공유검토, 저비용/커버리지	

후보 대역	주요 선호국	비고		
2300-2400MHz	브라질, 중국, 한국, 호주 등	유럽 및 미국 지역 Mobile 용도로 할당되지 않음		
2700-2900MHz	스웨덴	미국, 유럽 반대		
3.4-4.2GHz	유럽, 일본, 한국 등	3400-3700MHz 대역 Radar 공유. C-band 고정 위성 공유 검토. 고정 M/W 공유 검토		
4.4-5.0GHz	유럽, 일본, 한국 등	0400~07000NH 12 내극 Raual 증ㅠ, C~uallu 포경 귀경 증ㅠ 함도, 포경 N/W 증ㅠ 참도		

^{*} 미국, 영국, 호주, 캐나다 등은 기존 IMT-2000 대역의 IMT-Advanced 용도 확장을 주장

2.2.2 Sharing SWG(후보 대역 내 공유 연구 및 2.5GHz 공유 연구)

- 후보 대역 내 공유 연구

공유 연구는 IMT-Advanced가 도입될 경우 기존 시스템(타 서비스)이 받는 간섭 영향 정도를 파악하는 것을 목적으로 한 것으로 DVB및 FSS sharing은 CG (Correspondence Group)을 구성하여 차기 회의 전까지 논의 진행 예정 ITU Web site(Jive Facility)를 활용키로하였고, 차기 회의에서 후보 대역 관련 공유연구를 모두 마무리할 예정이다.

470-802/860MHz 대역 DVB Sharing은 DVB-T/H 와 IMT 간 공유연구를 기본으로 하되, 이외 기존/계획된 application(media-Flo, T-DMB, ISDB 등) 간의 공유연 구를 진행하기로 하였다.

FSS & FS Sharing 관련 3.4~4.2GHz FSS(고정위성), FS(고정) 간 공유연구는 FSS 시스템과 IMT-Advanced 간 공유가 불가하다는 입장(룩셈부르크, Immarsat, Panamsat Europe 등) vs 실제 지형 특성을 고려할 경우 제한적으로 공유가 가능하다는 입장(한국, 프랑스, 일본 등)이 대립하였고, 아래와 같은 기본적인 사항에 대해 합의가 있었다.

- IMT-Parameter는 CEPT 기고문(8F/875), FSS는 WP4A의 Liaison(8F/772)를 기본으로 고려
- IMT-Advanced 시스템으로부터 FSS 지구국으로 의 간섭 허용기준: I/N 수치를 -12,2dB(6%)로 잠정 합의. (룩셈부르크(WP4A)는 3%(1/N=-15,2dB), 프 랑스, 일본은 6%(-12,2dB), 한국은 10%(-10,0dB)

제안하였음)

2700-2900, 3400-3700MHz Radar sharing은 IMT-2000 추가대역과 인접함을 장점으로 본 대역을 후보 대역으로 몇 개 회사가 주장(에릭슨, 노키아)하고 있으나, 이는 미국이 radar로 활용하고 있는 대역으로 미국이 3.4GHz 대역 초반을 항공 측위로 추가 할당할 움직임에 대해 대응하고자 하는 움직임으로 판단된다.

- 2.5GHz 대역에서의 WiMAX-IMT-2000 공유 연구

지난 회의 작업 문서를 바탕으로 문서 내용 정리작업을 하였으며 BWA시스템 공유연구 파라미터는 8A에서 작성중인 ITU-R M.[LMS,CHAR,BWA] 문서에 주어진 값들을 적용하기로 합의하였다. 미국은 본 대역에서 IMT-2000과 MBWA 시스템과의 공유를 위한 System-A(HC-SDMA)및 IEEE802.16e-2005의 기술적 고려사항을 제시하였으며, 본 보고서는 2007년 5월 완료 예정이다.

2.2.3 Estimation SWG(IMT-Advanced 주파수 소 요량 산출 작업)

- 소요량 산출 작업 완료

최소 1280MHz IMT용 주파수 소요량을 도출하였다. 한국/일본/CEPT의 경우 High market size case로 1720 MHz 소요량을 도출, 보고서에 포함하였다.

■ 산출 소요량

Systems	IMT-2000 & Enhancement			IMT-Advanced			Total(Additional*)		
Year	2010	2015	2020	2010	2015	2020	2010	2015	2020
High Market Spectrum	840	880	880	0	420	840	840 (290)	1300 (750)	1720 (1170)
Low Market Spectrum	760	800	800	0	500	480	760 (210)	1300 (750)	1280 (730)

^{*}Additional=Total-550MHz

2.2.4 WRC SWG(CPM Text 작성)

차기 회의가 WRC SWG의 마지막 회의로써, 주파수 할당 방법에 대하여 집중적으로 논의될 것으로 예상된다. 기존 할당 방법의 모호함이 지적되어 새로이 재논의 되었다.

■ 주파수 할당 방법

2.3 Technology Working Group

2.3.1 IMT.TECH SWG(IMT.TECH scope & workplan)

method	내용	장점	단점
Method 1	기존 IMT-2000 및 신규 주파수를 모두 IMT	- IMT-2000 대역에 새로운 기술 도입이 용이	- 일부국 IMT-2000 도입의 어려움 증가 주장
	로 지정(RR footnote 사용)	- 기존 IMT-2000 대역에서의 빠른 IMT-	
		Advanced 도입이 가능	
		- IMT-Advanced 도입시 IMT-2000에 활	
		용된 기존 Infrastructure 활용성 증가	
Method 2	기존 IMT-2000은 그대로 두고 신규 주파수	- IMT-2000 할당에 대해 regulation 문제	- IMT-2000과 IMT-Advanced와의 인위적
	를 IMT-Advanced 또는 IMT-2000으로 지	소지 없음	인 분리로 IMT-Advanced용 새로운
	정(footnote 사용)	- 주파수 사용에 대한 장기 계획 가능	regulation 방법 요구
			− 기존 IMT-2000 대역 활용성 감소
Method 3	기존 IMT-2000은 그대로 두고 신규 주파수	- 새로운 기술이 IMT-2000 또는 IMT-	
	를 IMT로 지정(footnote 사용)	Advanced용으로 독립적으로 선택사용	
		가능	
Method 4	새로운 mobile 대역 추가로 1차 분배,	- 필요 기술을 선택 사용 가능함	- 전 세계 공통 밴드 플랜이 어려움
	footnote 삽입하지 않음. 단 WRC	- 주파수 활용에 있어서 flexibility를 크게 증가	
	Resolution에 guideline 제시		
기타	위성 component 관련 방법	- WP8D에서 제공 예정	
	RR 개정하지 않음	- 룩셈부르크 제안내용. 실제 논의되지는 못함	

본 보고서 목적/scope 등에 대한 이견이 대립. IMT—Advanced 표준화 방향이 수립되지 않은 상황에서 이를 결정하기는 어렵다고 판단. 차기 회의 Principle Resolution 완료 후, 이를 바탕으로 보고서 목적을 재논의 후 진행하기로 합의하였다.

2.3.2 M.1457 & Q.223 SWG

M.1457은 IMT-2000 TDMA-SC 방식의 로드맵 업데 이트를 수행하였으며, Q.223 관련 Recommendation, Report 모두 개발하기로 합의하고 Recommendation은 high level requirement를 주로 포함하기로 하며, Report 는 DG를 구성하여 진행하였다. IP.Char 문서 관련, External Organization들에게 input을 요청하는 liaison을 작성하였다.

2.3.3 BWA Drafting Group

WP8A의 liaison 문서(WP8A 진행 중인 BWA 관련 권고안/보고서 내용검토 및 주요 input 요청)를 바탕으로 차기 회의까지 답변을 작성 후, WP8A 9월 회의에 회신하고 자 DG를 구성하여 External Organization에게 IMT-2000의 파라미터 값을 WP8A로 직접 송부할 것을 요청하는 Liaison 문서(8F/Temp/394) 및 WP8A로 보내는 liaison문서(8F/temp/393)를 작성하였다.

3. 회의 대응결과 및 차기 회의 주요 이슈

금번 회의에 한국은 주파수 소요량 산출 보고서 관련한 한국/일본 공동 기고문 1건을 포함하여 총 7건의 기고문을 제출하였다. IMT-Advanced 표준화 원칙 Resolution 기고문은 일본, 유럽과 유사한 방향으로써 회의 중 한국의 의견이 포함되도록 노력하였으며, 본 Resolution 문서는 차기회의 완료 예정으로써, 한국은 향후 IMT-Advanced 표준화 방향에 대한 전략을 명확히 하여 이를 차기 회의 반영하여야 할 것이다. 표준화 Timeline에 있어서는 한국, 일본, 영국이 금번 회의에서 2010년 IMT-Advanced의 첫 번째 표준안이 만들어지도록 하자고 제안하면서 이러한 제안이 WP8F의 Workplan 문서에 포함되었다. 이외에도 한국은 주요 후보 주파수 대역으로 고려 중인 3.4~4.2GHz 대역에 대하여 고정위성과 IMT-Advanced 시스템간의 공유 가능성을 보여주는 기고문을 제안하였으며, 이 역시 차기 회의에서 위성 전문가를 상대로 지속적으로 논의될 전망이다.

차기 20차 WP8F 회의(2006. 8. 23. ~ 2006. 8. 30, 미국 덴버)는 WRC-07을 대비하기 위한CPM text, 후보 대역 보고서(Candi Report)가 마무리되고 IMT-Advanced 표준화 방향을 설정하는 Resolution 작업이 마무리되는 아주 중요한 회의이다. WRC-07에서 주파수 확보를 목표로하고 있는 한국은 저대역을 포함하여 선호 대역에 대한 입장을 정리하고 이를 차기 회의 CPM text 및 후보 대역 보고서에 포함될 수 있도록 준비해야 할 것이며, IMT-Advanced 표준화 진행방향에 대한 전략 역시 차기 회의에 한국의 의견이 반영될 수 있도록 철저한 준비가 이루어져야 할 것이다.

TTA