Current status of research on radionuclides used in nuclear mediccine

중성자선 실험 및 발암연구의 현황과 미래

  • 김희선 (한국수력원자력(주) 방사선보건연구원)
  • Published : 2006.09.30

Abstract

In recent years the progress of nuclear medicine advanced dramatically in imaging and targeted radionuclide therapy is able to open op exciting perspectives as standard diagnostic and therapeutic modalities, complementing conventional modalities. Positron emission tomography/computed tomography (PET/CT) technology with FDG has been developed clinically in less than 10 years as a routine standard in oncological imaging, including a number of other fluorinated radiopharmaceuticals being evaluated for their ability to complement FDG. However, the limitation of FDG-PET such as non-specific uptake and its short half-life is not compatible with the time necessary for optimal tumour targeting. Therefore, a development of innovative positron-emitting radionuclides with half-lives longer than 10 h is needed. For therapeutic applications, the injection of higher activities is required to reach efficient adsorbed doses in radioresistant solid tumours, while limiting the irradiation of vital organs. In this application, the longer half-life of radiolsotopes are more fit well for radionuclide therapy. To achieve this, researches have to be carried in a largor spectrum of radionuclides for diagnosis and therapy. In the context of rapidly growing nuclear medicine and strong demanding innovative radionuclides, a high-energy (100 MeV), high-intensity (-mA) accelerator with proton (PEFF at KAFRI). will be operating in 2011. The priorities of PEFP will include supporting the nuclear medicine research community by providing those radionuclides with current limited availability by means of a high-energy, high-intensity accelerator.

Keywords