물결합재비 및 단위수량에 따른 고유동 콘크리트의 유동특성 및 압축강도특성

최 세 진 (주)삼표 기술연구소 책임연구원 · 공박

이 성 연 (주)삼표 R/C본부장 전무·공박

여 병철 (주)삼표 R/C부문대표 전무·공박

서론

고유동콘크리트는 종래의 보통 및 유동화 콘크리트에 비하여 높은 유동성과 재료분리 저항성을 가지고 있어. 건설생산현장에서 노 동력의 절감효과와 고품질의 콘크리트를 제 조할 수 있는 기술로 주목받고 있다^{1,2)}. 이러한 고유동콘크리트는 소요의 반죽질기를 확보하 기 위하여 적절한 단위수량, 단위결합재량, 고성능감수제의 사용량을 선정하여야 하며. 또한 소요의 시공성이 확보되는 물결합재비 에 상응하는 압축강도를 확보하여야 하는 등 사용재료. 배합상의 특징이 있다.

최근. 국내·외적으로 이러한 고유동콘크 리트에 대한 연구가 활발히 이루어지고 있으 나 일본 등 선진국에 비하면 연구 및 적용실 적이 아직 미미한 수준이라고 할 수 있으며. 특히 고유동콘크리트의 배합과 관련된 물결 합재비. 단위수량 등과 관련하여 충분한 검토 및 정립이 이루어지지 않은 실정이다.

따라서, 본 연구는 이러한 고유동콘크리트 의 사용재료, 배합상에 중요하게 작용하는 물 결합재비 및 단위수량과의 관계를 유동특성 및 강도특성에 의해 실험·실증적으로 검 토 · 분석함으로서 분체형 고유동콘크리트의 배합설계용 기초자료를 제시하고자 하였다

실험계획 및 실험방법

2-1 실험계획

본 연구의 실험계획은 물결합재비 및 단위 수량에 따른 분체형 고유동콘크리트의 각종 유동특성을 비교 · 분석 · 검토하기 위한 것으 로. [표 1]과 같이 물결합재비의 수준을 0.30. 0.35, 0.40, 0.45의 4수준, 단위수량을 155, 165. 175. 185kg/m³의 4수준으로 설정하고 플라이애시의 대체율은 20%로 고정하였다.

또한, 고성능감수제 첨가율의 경우 재료분리 가 발생하지 않으며 적당한 유동성을 확보할 수 있는 범위내에서 소정의 양을 투입하였다.

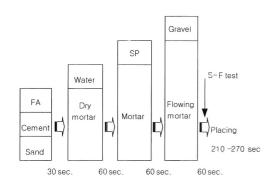
물결합재비 및 단위수량에 따른 고유동콘크리트의 유동특성 및 압축강도특성

W/B	Rep. of FA (%)	Kinds of cement	s/a (%)	Water content (kg/m³)	Unit weight (kg/m³)				Test items			
					С	FA	S	G	Fresh concrete	Hardened concrete		
0.30	- 20	Ordinary portland cement	50	155	412	103	799	821				
				165	440	110	770	791				
				175	467	117	742	763				
				185	493	123	715	734	· Air content	· Compressive str.		
0.35				155	359	90	827	850	Unit weight	(1, 7, 28, 56days)		
				165	383	96	802	824	· Fluidity:			
				175*	406	101	776	797	Slump-Flow(cm)			
				185	429	107	750	771	· Fillingability:			
0.40				155	313	78	854	877	V-lot(sec)			
				165	334	84	828	851	L-passing(cm)			
				175	355	89	802	824	. Non acqueration			
				185*	375	94	780	802	· Non-segregation ability L-passing			
0.45				155	278	69	873	897	(ratio of coarse agg.)			
				165	297	74	849	872				
				175	315	79	826	849				
				185	333	83	802	824				

[표 1] 실험계획 및 측정항목

굳지않은 고유동콘크리트의 각종 유동특성 을 비교·검토하기 위한 측정항목으로서 공 기량, 단위용적중량, 슬럼프-플로우, V-로트 및 L형통과시험을 실시하였다.

또한, 경화콘크리트의 경우, 재령별 압축강 도 특성을 비교 · 검토하였다.


2-2 사용재료 및 비빔방법

본 연구에 사용된 각 재료의 특성은 [표 2] 와 같다.

또한, 콘크리트의 비빔은 균질성을 확보하고

[표 2] 사용재료의 물리적 특성

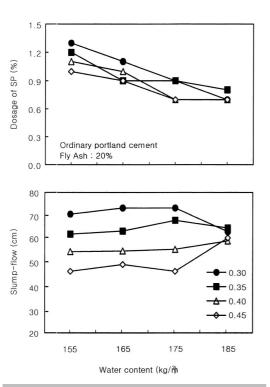
Fine agg.	River sand, 2.5mm, F.M.: 2.60, S.G: 2.55						
Coarse agg.	Crushed stone, 20mm F.M.: 6.61, S.G: 2.62						
Cement	Ordinary portland cement Specific gravity(S.G.): 3.15, Brain: 3,200(cm²/g)						
Fly Ash	Specific gravity: 2.13 Brain: 3,228(cm²/g), IOL: 2.44%						
Admixture	Superplasticizer Polycarbon-based, S.G: 1.04~1.06						

[그림 1] 콘크리트의 비빔방법

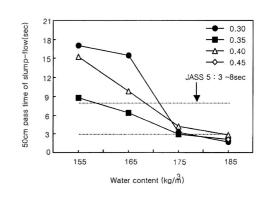
각 구성재료의 원활한 혼합을 위하여. [그림 1] 과 같은 방식으로 강제식 팬타입 믹서를 사용 하여 (시멘트+플라이애시+잔골재)→(물+고성 능감수제)→(굵은골재)의 단계별로 균질하게 구성재료를 분할투입하는 방법을 채택하였고. 총 비빔시간은 210~270초 정도가 소요되었다.

실험결과 및 분석

[표 3]은 고유동콘크리트의 실험결과를 나 타낸 것이다.


[표 3] 고유동콘크리트의 각종 실험결과

W/B	Water content	ent of SP conten	Air content	Unit weight	ght flow	SF50cm pass time (sec)	V-lot (sec)	L-passing test		Volume ratio	Compressive strength			
								Falling	Ratio of coarse agg. (%)	(paste /agg.)	(kgf/cm²)			
	(kg/m³)		(%)	(kg/l)				height (cm)			1 day	1 week	4 weeks	8 weeks
0.30	155	1.3	1.7	2.349	69.5	17.01	41.41	10.0	7.2	53	264	478	680	873
	165	1.1	1.9	2.342	72.0	15.50	16.50	10.5	12	59	224	386	559	654
	175	0.9	1.9	2.317	72.0	3.24	9.97	19.0	6.4	65	272	404	710	794
	185	0.7	2.4	2.297	62.5	1.63	5.37	22.0	9.8	71	237	432	619	678
0.35	155	1.2	2.9	2.328	61.5	8.74	70.69	3.5	0.5	48	204	413	625	724
	165	0.9	2.2	2.338	63.0	6.34	49.62	11.5	0.7	53	198	379	567	711
	175	0.9	1.7	2.325	67.0	2.96	5.97	13.0	1.7	58	165	388	584	679
	185	0.8	1.8	2.318	64.0	2.12	4.78	16.0	1.7	63	160	411	517	659
0.40	155	1.1	1.6	2.366	54.5	15.30	55.30	-	_	43	169	369	504	646
	165	1.0	1.6	2.334	55.0	9.83	50.31	ı	_	48	161	360	450	572
	175	0.7	2.3	2.320	55.5	4.20	19.97	ı	_	52	150	357	473	561
	185	0.7	2.0	2.291	59.0	2.79	5.39	14.0	_	57	132	255	344	402
0.45	155	1.0	2.3	2.345	46.5	ı	22.40	ı	_	40	95	301	431	554
	165	0.9	2.4	2.300	49.5	_	31.02	_	-	44	87	299	415	485
	175	0.7	2.4	2.297	46.5	1	24.08	2.0	-	48	87	283	400	488
	185	0.7	1.5	2.302	60.0	2.12	8.05	4.0	_	52	82	201	341	350


3-1 각종 유동특성 검토 및 분석

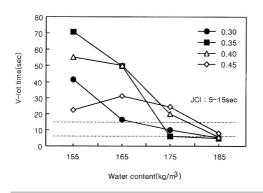
3-1-1 유동성 평가시험에 대한 고찰

물결합재비 및 단위수량에 따른 고성능감 수제 첨가율과 슬럼프-플로우의 변화를 나타 낸 [그림 2]에서 보는 바와 같이 단위수량이 동일할 경우, 각 물결합재비 수준에서 고성능 감수제의 첨가량은 0.1~0.3% 정도의 차이를 보이고 있으며, 동일한 물결합재비에서는 단 위수량이 증가함에 따라 고성능감수제의 첨 가량은 점차 감소하는 것을 알 수 있다. 또한. 물결합재비가 높을수록 대체적으로 슬럼프-플로우가 낮게 나타나고 있음을 알 수 있는 데. 이는 물결합재비가 증가함에 따라 분체량 이 감소하여 유동성을 만족시키기 위한 적정

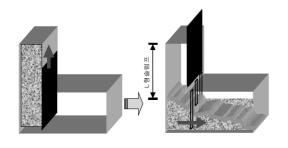
[그림 2] SP제 첨가율과 슬럼프플로우의 변화

[그림 3] 슬럼프플로우 50cm 도달시간의 변화

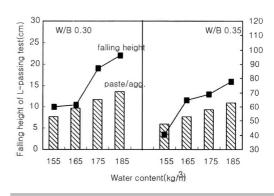
수준의 분체량보다 부족했기 때문으로 사료 된다. 즉, 물결합재비 0.30 및 0.35와 같이 분체량이 상대적으로 많은 배합의 경우 모두 슬럼프-플로우 61~72cm의 수준을 보이고 있는 반면. 물결합재비가 0.40과 0.45인 배 합의 경우 슬럼프-플로우가 47~59cm로서 상대적으로 낮은 수준을 보이고 있다.

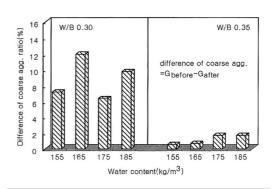

따라서. 본 논문의 대상인 플라이애시를 사 용한 분체형 고유동콘크리트의 경우, 슬럼 프-플로우 60cm 이상을 확보하기 위해서는 물결합재비는 0.35이하로 하는 것이 상대적 으로 유리한 것으로 나타났다.

[그림 3]은 물결합재비 및 단위수량에 따른 슬럼프-플로우 50cm 도달시간의 변화를 나 타낸 것으로서. 단위수량 155kg/m³의 경우 도달시간은 8~17초로 나타났으며, 단위수량 185kg/m³에서는 2초 내외로 분포하고 있어 단위수량의 증가에 따라 슬럼프-플로우 50cm 도달시간이 빨라지는 것으로 나타났 다. 특히. 단위수량 175kg/m³인 경우 물결합 재비 0.45를 제외하고 대부분의 배합에서 일 본건축학회에서 규정하고 있는 슬럼프-플로 우 50cm 도달시간 3~8초의 범위를 만족시 킴으로써 적정한 점성을 가지고 있는 것으로 나타났다


또한, 물결합재비에 따른 변화를 살펴보면, 물결합재비 0.35에서 상대적으로 양호한 성 상을 보이고 있다

3-1-2 간극통과성 및 재료분리저항성 검토


물결합재비 및 단위수량에 따른 V 로트 유 하시간의 변화를 나타낸 [그림 4]에서 보는 바 와 같이 전체적으로 단위수량이 증가할수록 V 로트 유하시간은 빨라지는 경향을 보이고 있다. 특히, 단위수량 175kg/m³의 물결합재 비 0.30, 0.35, 단위수량 185kg/m³의 모든 배합에서 일본 콘크리트공학협회에서 규정하 고 있는 V 로트 유하시간 범위인 5~15초의


[그림 4] V 로트 유하시간의 변화

[그림 5] L형 통과시험 측정방법

[그림 6] L형 통과시험 낙하높이의 변화

[그림 7] 굵은골재 중량비차의 변화

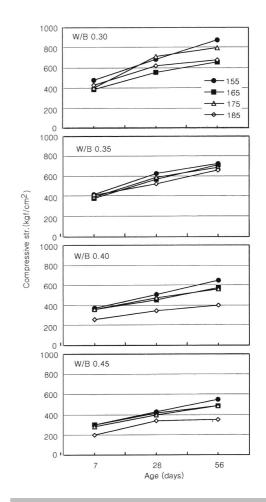
범위를 만족하고 있다.

[그림 6]은 물결합재비 0.30. 0.35에서 단 위수량에 따른 L형 통과시험 [그림 5]의 낙하 높이를 나타낸 것으로 단위수량 및 페이스트/ 골재 용적비가 증가할수록 L형 통과시험의 낙하높이도 증가하고 있음을 알 수 있는데. 이는 동일 물결합재비에서 단위수량이 증가 할수록 골재용적이 상대적으로 감소했기 때 문으로 판단된다. 물결합재비 0.40 및 0.45 의 경우에는 거의 모든배합에서 일본 콘크리 트공학협회의 L형 통과시험 기준을 만족시키 지 못하여 본고에서는 이를 제외하였다.

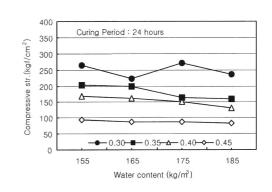
또한. [그림 7]은 L형 통과시험을 이용하여

구한 전 · 후실 굵은골재 중량비차의 변화를 나타낸 것으로, 시험 전 · 후실의 콘크리트중 의 굵은골재량을 비교함으로서 콘크리트의 재료분리저항성을 검토하고자 하였다.

굵은골재 중량비차는 다음과 같은 식에 의 하여 산출하였으며, 중량비차가 적을수록 균 질한, 즉 재료분리저항성이 우수한 특성을 나 타내다


굵은골재 중량비차 = Gbefore - Gafter 단. Gbefore: 전실 콘크리트중의 굵은골재 중량(%) Gafter : 후실 콘크리트중의 굵은골재 중량(%)

그림에서 알 수 있듯이, 대체적으로 물결합 재비 0.35인 경우가 0.30보다 굵은골재 중량 비차가 작게 나타나고 있어. 재료분리저항성 이 상대적으로 양호하게 나타났다.


3-2 압축강도 특성 검토

물결합재비별 단위수량에 따른 각 재령별 압축강도의 변화를 나타낸 [그림 8]에서 알 수 있는 바와 같이 물결합재비가 증가할수록 압 축강도가 감소하는 일반적인 경향을 보이고 있다. 또한. 배합설계시 기준이 되는 재령 4 주의 압축강도 발현특성을 보면 물결합재비 0.40 및 0.45의 단위수량 185kg/m³를 제외 하고 모든 배합에서 400kgf/cm²이상의 압축 강도 수준을 보이고 있다.

또한. 재령 24시간후의 압축강도를 나타낸 [그림 9]에서 보는 바와 같이 모든 배합에서 일본건축학회에서 고유동콘크리트의 1일 압 축강도로 제안하고 있는 50kgf/cm²를 상회 하는 90~250kgf/cm²의 수준을 나타내고 있 어. 건설생산현장에서 거푸집 탈형문제로 인 한 공기지연 문제점은 없을 것으로 사료된다.

[그림 8] 각 재령별 압축강도의 변화

[그림 9] 재령 1일에서의 압축강도 변화

₩ 결론

물결합재비 및 단위수량에 따른 고유동콘 크리트의 유동특성 및 압축강도특성을 비 교·검토한 결과 다음과 같은 결론을 얻었다.

- 1) 단위수량이 동일할 경우 고성능감수제의 첨가율은 0.1~0.3%정도의 차이를 나타냈으 며, 동일한 물결합재비에서는 단위수량이 증 가함에 따라 고성능감수제의 첨가율이 점차 감소하였다.
- 2) 본 연구의 경우, 슬럼프-플로우 60cm 이상을 확보하기 위해서는 물결합재비는 0.35이하로 하는 것이 상대적으로 유리한 것 으로 나타났다.
- 3) 단위수량 175kg/m³에서 일본건축학회에서 제시하고 있는 슬럼프-플로우 50cm 도달시간 3~8초의 범위를 대부분 만족시킴으로써 양호한 점성을 나타내었다.
- 4) 간극통과성의 경우, 단위수량 및 페이스 트/골재 용적비가 증가할수록 양호하게 나타 났으며, 재료분리저항성의 경우 물결합재비 0.35가 0.30보다 상대적으로 굵은골재 중량 비차가 적게 나타나, 본 연구 대상의 경우 재 료분리저항성이 가장 양호한 물결합재비는 0.35로 나타났다.
- 5) 재령 24시간 압축강도의 경우, 모든 배합에서 일본건축학회의 제안치인 50kgf/cm²를 상회하는 250kgf/cm²의 수준을 나타냈다.

참고문헌

 超流動コソクリート研究委員會, "コンクリート シンポジウム論文報告集,"日本コソクリートエ 學協會, 1993.5.21

- 2. 日本建築學會編, "高流動コンクリートの材料・調合・製造・施工指針(案)," 日本建築學會, 1997, 1.
- 3. 金武漢, "高流動콘크리트의 콘시스턴시 特性 및 各種 影響要因에 關한 考察," 레미콘지, 1996. 4
- 4. 日本建築學會,"建築工事標準仕様書・同解説 (JASS5 鐵筋コンクリート工事)," 1997. 3, pp 404~405
- 5. 岩崎訓明, "コンクリート配合の原點," セメント コンクリート No.564, 1994. 4, pp.20~27
- 6. 十河茂幸ほか3, "高流動コンクリートのフレッシュ性狀に及ぼす骨材粒度の影響," コンクリート工學年次論文報告集, Vol.17, No.1, 1995, pp.11~16
- 7. 佐藤正一ほか3, "細骨材の粒度の相違が高流動コンクリートの性狀に及ぼす影響について," コンクリート工學年次論文報告集, Vol.17, No.1, 1995, pp.111~116
- 8. 桝田佳寛ほか3, "準高流動コンクリートに關する實驗的研究(その1~3)," 日本建築學會學術講演梗概集, 1997, pp.219~224
- 10. 名和豊春ほか, "高ビーライト系セメントを用いた高流動・高强度コンクリートに關する研究," コンクリート工學年次論文報告集, Vol.15, No.1, pp.143~148, 1993
- 11. 西本好克ほか3, "高流動コンクリートのフレッシュ性狀に關する基礎的研究,"コンクリート工學年次論文報告集, Vol.16, No.1, pp.119~124, 1994
- 12. 西林新藏ほか3, "フレッシュコンクリートの流動性評價に關する研究," コンクリート工學年次論文報告集, Vol,14, No.1, pp.375~380, 1992

물결합재비 및 단위수량에 따른 고유동콘크리트의 유동특성 및 압축강도특성

- 13. 김무한 외. "초유동콘크리트의 제조시스템 및 개발에 관한 실험적연구," 대한건축학회논문 집, 제13권 5호, 통권103호, pp.279~288, 1997
- 14. 이상수 외, "초유동콘크리트의 적용사례(인천 지하철)." 한국콘크리트학회 가을학술발표논 문집, 제10권2호, pp.916~921, 1998
- 15. 김무한 외. "고로슬래그미분말을 사용한 고유 동콘크리트의 내동해성에 관한 실험적연구." 콘크리트학회논문집, 제12권 2호, 통권56호, pp.43~51, 2000