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Abstract. (Left or Right) Weakly commutative semigroups are described. Relationships

of weakly commutative semigroups and (l- or r-) Archimedean semigroups are discussed.

The structure theorems of weakly commutative semigroups and weakly commutative abun-

dant semigroups are shown.

1. Introduction and basic concepts

The abundant semigroups are discussed in [1]. Now, a semigroup S is called
left (resp. right) abundant if for a ∈ S. (a)L∗ ∩E(S) 6= ∅ (resp. (a)R∗ ∩E(S) 6= ∅).
It is clear that S is abundant if and only if S is both left and right abundant.

Weakly commutative semigroups are described in [2]. A semigroup is called left
(resp. right) weakly commutative if for any x, y ∈ S, (xy)n ∈ yS (resp. (xy)n ∈ Sx)
for some n ∈ N+. It is easy to see that semigroup S is weakly commutative if and
only if S is both left and right weakly commutative.

The properties of weakly commutative semigroup was firstly studied by
M.Petrich in [2]. It was pointed out by Petrich that the principal filters of such
kind of semigroups has a particularly simple form and in fact Petrich observed
that an algebraic semigroup S is weakly commutative if and only if principal filter
generated by x ∈ S is of the form (see [2, Theorem II 5.2])

n(x) = {y ∈ S | xn ∈ ySly for some n ∈ N+}.

It was then shown by Petrich in [2] that weakly commutative semigroups are
semilattices of Archimedean semigroups and such semilattice decompositions may
not be unique. It was pointed out in [2] that a semilattice of Archimedean semi-
groups may not be weakly commutative semigroup.

We call a subset T of semigroup S (weakly) l- (resp. r-) Archimedean if for any
a, b ∈ T , an = µb (resp. an = bµ) for some n ∈ N+, (µ ∈ S) µ ∈ T .

A subset T is both l- and r- Archimedean then we call T be bi- Archimedean
clearly, bi- Archimedean set T is Archimedean. But the converse part of this state-
ment is in general not true. For example, we can see the following.
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Example 1.1. Let S = { 1
n | n ∈ N} be a set with the following multiplica-

tion in S1(∀a, b ∈ S), i.e., S is right 0- semigroup. Then we can check that S1 is
an Archimedean semigroup. But it is not bi- Archimedean and it is not weakly
commutative.

It is clear that weakly l- (resp. r-) Archimedean semigroup is in general not l-
(resp. r-) Archimedean. The converse part of this statement is true.

In this paper, we study relationships of weakly commutative and (l- or r-)
Archimedean. The structure theorems of weakly commutative semigroups and
weakly commutative abundant semigroups are shown.Thus, we give a complete
solution to the problem posed by M. Petrich in [2].

For terminologies and definitions not given in this paper, the reader is referred
to Petrich [2] and A. Ei. Qallali [1]. Throughout this paper. S unless otherwise
stated is always a semigroup. SC(S) denote the set of all semilattice congruences
on S. N ∈ SC(S) is defined by following equivalence relations:

N = {(x, y) | n(x) = x(y)}, ∀x, y ∈ S.

For σ ∈ SC(S) denote the congruence class of x ∈ S by (x)σ. The quotient set
S/σ = {(x)σ | x ∈ S}. With the following multiplication (x)σ(y)σ = (xy)σ(x, y ∈ S)
then S/σ is a semilattice.

2. The structure of weakly commutative semigroups

In this section the structure theorems of left (resp. right) weakly commutative
semigroups and weakly commutative semigroups will be given. Thus, we provide a
solution to the problem posed by M. Petrich in [2].

Theorem 2.1. For a semigroup S the following statements are equivalent:

(1) S is left (resp. right) weakly commutative;

(2) (∀a ∈ S) n(a) = {y ∈ S | an ∈ ySl(∃n ∈ N+)}
(resp. n(a) = {y ∈ S | am ∈ Sly(∃m ∈ N+)})

(3) (∀a ∈ S) (a)N = {y ∈ S | an ∈ ySl and ym ∈ aSl (∃n,m ∈ N+)}
(resp. (a)N = {y ∈ S | am ∈ Sly and ym ∈ Sla (∃n,m ∈ N+)})

(4) (∀a ∈ S) (a)N is (weakly) r- (resp. l-) Archimedean;

(5) (∃ | N ∈ SC(S)) S is semilattice of is (weakly) r- (resp. l-) Archimedean
subsemigroups {(a)N | a ∈ S}.

Proof. We only prove that the part of S is left commutative.
(1) ⇒ (2). Let T := {y ∈ S | an ∈ ySl(∃n ∈ N+)}.
Since a ∈ aSl so T 6= ∅. For x, y ∈ S, such that xy ∈ T then (∃n ∈ N+, u ∈

Sl) an = x(yu) yu ∈ Sl, so x ∈ T . Since (∃m ∈ N+, v ∈ S), (x(yu))m =
(yu)v = y(uv)(uv) ∈ S by S is left weakly commutative, so we obtain that anm =
(x(yu))m = (yu)v(nm ∈ N+, uv ∈ Sl), i.e., y ∈ T and T is a filter set.
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The following, we will show that T is the smallest filter subsemigroup containing
a, then T = n(a) by definition of a.

Let x ∈ T , we first prove xk ∈ T for k ∈ N+. Let (∃ n − 1 ∈ N+, u ∈ Sl)
an−1 = xu and an = axu. Clearly, there exists m ∈ N+, v ∈ S. Such that
((ua)x)m = xv by S is left weakly commutative. Hence we imply that an(m+1) =
(axu)m+1 = ax(uax)mu = axxvu = ax2vu. And there exists I ∈ N+, t ∈ S
such that an(m+1)l = (ax2vu)l = (a(x2vu))l = x2vut ∈ x2S1 by S is left weakly
commutative. So we have x2 ∈ T and imply xk ∈ T for ∀k ∈ N+.

Let x ∈ T , y ∈ T , we show yx ∈ T (resp. xy ∈ T ) i.e., T is semigroup and it is
a filter subsemigroup containing a. So we have n(a) ⊆ T by n(a) is the least filter
subsemigroup containing a. Let (∃n, m ∈ N+, u, v ∈ Sl) an = xu and am = yv then
an+m = xuyv. Clearly, by xuy ∈ T and above proving we have (xuy)2 ∈ T . Let
(∃e ∈ N+, t ∈ Sl) al = (xuy)2t = xu(yxuyt), by S is left weakly commutative, we
imply that (∃k ∈ N+, λ ∈ S) alk = (xu(yxuyt))k = yxuytλ = (yx)(uytλ) (uytλ ∈
S). That is yx ∈ T . So T is a filter subsemigroup and n(a) ⊆ T .

We now claim that T is the smallest filter containing a. If the claim is estab-
lished, then T = n(a), by definition of n(a). Let F be a filter of S such that a ∈ F ,
Let x ∈ T . Then, there exists some k ∈ N+ such that ak = xu for some u ∈ Sl.
Since F is a filter containing a, so we have xu = ak ∈ F . Consequently, x ∈ F .
Thus, our claim is established so that T = n(a).

(2) ⇒ (3)(∀a ∈ S). Let b ∈ (a)N then (a)N = (b)N i.e., n(a) = n(b). By
b ∈ n(a) = {y ∈ S | an ∈ ySl (∃n ∈ N+)} and a ∈ n(b) = {y ∈ S | bm ∈ ySl (∃m ∈
N+)} we obtain an ∈ bSl and bn ∈ aSl. This means that

(a)N = {y ∈ S | an ∈ ySl and ym ∈ aSl (∃ n,m ∈ N+)}
(3) ⇒ (4)(∀a ∈ S). Let x, y ∈ (a)N then, x ∈ (a)N = (y)N = {z ∈ S | yn ∈

zSl and zm ∈ ySl(∃n,m ∈ N+)}. So we have yn = xu and xm = yv (∃n,m ∈
N+, u, v ∈ Sl). This means that (a)N is weakly r -Archimedean. We also prove
that (a)N is r -Archimedean. For this purpose, we only prove u, v ∈ (a)N . Since
N ∈ SC(S), (x)N = (xm)N = (yvxm)N = (yvx)N , (y)N = (yn)N = (xuy)N , so
we have (vx)N = (vx2)N = (vx)N (x)N = (vx)N (y)N = (yvx)N = (x)N Similarly,
(uy)N = (y)N . We immediately obtain that vx ∈ (x)N = (a)N , uy ∈ (y)N = (a)N
such that yn+1 = x(uy) and xm+1 = y(vx). So (a)N is r -Archimedean.

(4) ⇒ (5). By statement (4), we have that S is a semilattice of {(a)N | (a)N is
r -Archimedean, ∀a ∈ S}

Let σ ∈ SC(S) such that (a)σ is r -Archimedean, ∀a ∈ S. Let (a, b) ∈ σ. Then,
since b ∈ (a)σ so by the r-Archimedean property of (a)σ, there exists n ∈ N+, u ∈
(a)σ such that an = bu. Similarly, we have (∃m ∈ N+, v ∈ (b)σ) bm = av. Since
an ∈ n(a) and bm ∈ n(b). This leads to b ∈ n(a) and a ∈ n(b) by n(a) and n(b)
are filters of Sl. Hence n(a) = n(b), i.e., (a, b) ∈ N and σ ∈ N . But, we know that
N is the least element of SC(S) by Z. L. Gao [4]. So we also have N ⊆ σ. Thus
σ = N .

(5) ⇒ (1). Let S be a semilattice of {(a)N | (a)N is r -Archimedean, ∀a ∈ S}.
We need to prove that S is left weakly commutative. For this purpose, we just let
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x, y ∈ S, then yx ∈ (xy)N , and this leads to (∃ n ∈ N+) (xy)n ∈ yxSl. Thus, S is
left weakly commutative. The proof is complete. ¤

By the structure theorem of left (resp. right) weakly commutative semigroups in
Theorem 2.1. we can easily prove that the structure theorem of weakly commutative
semigroups. In fact we have following statements.

Theorem 2.2. Let S be a semigroup, then the following statements are equivalent:

(1) S is weakly commutative;

(2) (∀a ∈ S) n(a) = {y ∈ S | an ∈ ySly (∃n ∈ N+)};
(3) (∀a ∈ S) (a)N = {y ∈ S | an ∈ ySly and ym ∈ aSla (∃n,m ∈ N+)}
(4) (∀a ∈ S) (a)N is (weakly) bi-Archimedean;

(5) (∃ |N ∈ SC(S)) S is semilattice of is (weakly) bi- Archimedean subsemigroups
{(a)N |a ∈S}.

By Example 1.1 in this paper, we know that a semilattice of Archimedean semi-
groups may not be weakly commutative semigroup (cf. Example 1.1). This means
that the semilattice of Archimedean semigroups isn’t the structure characterization
of weakly commutative semigroups. By Theorem 2.2 in this paper, we give a com-
plete solution to the problem posed by M. Petrich in [2]. That is, the semilattice of
(weakly) bi- Archimedean semigroups {(a)N | a ∈ Sl} is the structure characteri-
zation of weakly commutative semigroup S.

3. The structure of weakly commutative abundant semigroups

In this section, we apply the statements in last section to proving of the struc-
ture of weakly commutative abundant semigroups.

Theorem 3.1. For a semigroup S, the following statements are equivalent;

(1) S is left weakly commutative and right (resp. left) abundant;

(2) (∀a ∈ S,∃e ∈ (a)R∗ ∩ E(S),3 a = ea)(resp. ∃f ∈ (a)L∗ ∩ E(S),3 a = af)
n(a) = {y ∈ S | (ea)n ∈ ySl (∃n ∈ N+)}
(resp. n(a) = {y ∈ S | (af)m ∈ ySl (∃m ∈ N+)});

(3) (∀a ∈ S,∃e ∈ (a)R∗ ∩ E(S),3 a = ea)(resp. ∃f ∈ (a)L∗ ∩ E(S),3 a = af)
(a)N = {y ∈ S | (ea)n ∈ ySl and ym ∈ eaSl ( ∃n,m ∈ N+)}
(resp. (a)N = {y ∈ S | (af)n ∈ ySl and ym ∈ afSl ( ∃n,m ∈ N+)});

(4) (∀a ∈ S,∃e ∈ (a)R∗ ∩ E(S),3 a = ea)(resp. ∃f ∈ (a)L∗ ∩ E(S),3 a = af);
(a)N = (ea)N is (weakly) r -Archimedean
(resp. (a)N = (af)N is (weakly) l-Archimedean);

(5) (∃N ∈ SC(S)) S is a semilattice of (weakly) r-(resp. l-)Archimedean sub-
semigrous {(a)N = (ea)N | e ∈ (a)R∗ ∩ E(S), ∀a ∈ S}
(resp. {(a)N = (af)N | e ∈ (a)L∗ ∩ E(S), ∀a ∈ S}).



On Weakly Commutative Abundant Semigroups 251

Proof. We only prove that the part of S is left weakly commutative and right
abundant.

(1) ⇒ (2). Let a ∈ S, since S is right abundant. There exists e ∈ (a)R∗ ∩E(S)
such that (a, e) ∈ R∗. Clearly, a = ea [1. Definition]. Hence (a)N = (ea)N . Now,
applying Theorem 2.1 in this paper, we immediately obtain

(∀a ∈ S) n(a) = {y ∈ S | (ea)n ∈ ySl(∃n ∈ N+)};

(2) ⇒ (3). Using (∀a ∈ S) (a)N = (ea)N and Theorem 2.1 we get statement
(3).

(3) ⇒ (4) ⇒ (5) ⇒ (1). By using similar technique of proof given in (2) ⇒ (3)
we also obtain the proof of above any section. ¤

Corollary 3.2. For a semigroup S, if R∗ ⊆ N , then the following statements are
equivalent:

(1) S is left weakly commutative and right abundant;

(2) ∀a ∈ S, ∃e ∈ (a)R∗ ∩ E(S),3 (a)N = (e)N , n(a) = {y ∈ S | a ∈ ySl}
(3) ∀a ∈ S, ∃e ∈ (a)R∗ ∩ E(S),3 (a)N = (e)N ,

(a)N = {y ∈ S | a ∈ ySl and y ∈ aSl}
(4) ∀a ∈ S, ∃e ∈ (a)R∗ ∩ E(S),3 (a)N = (e)N , (a)N is right simply.

(5) (∃N ∈ SC(S)) S is the semilattice of right simply subsemigroups
{(a)N = (ea)N | e ∈ (a)R∗ ∩ E(S), ∀a ∈ S}.

Proof. (1) ⇒ (2). Let (a, e) ∈ R∗ ⊆ N , then n(a) = n(e) = {y ∈ S | e ∈ ySl}.
(2) ⇒ (3). Using (a)N = (ea)N and Theorem 2.1. we get statement (3).
(3) ⇒ (4). We prove that (∀a ∈ S) (a)N is right simply.
(i) Clearly (a)N is subsemigroup of S and (a)N = {y ∈ S | an ∈ ySl and

ym ∈ aSl} by statement (3).
(ii) R = N . Clearly R ⊆ N by [2]. Let (a, b) ∈ N then b ∈ (a)N . So a ∈ bSl

and b ∈ aSl} by statement (3). Hence, we imply R(a) = R(b), that is, (a, b) ∈ R
and we have R = N .

(iii) Let I is a right ideal of S. then I =
⋃{(x)N | x ∈ I} by [2]. Now, we apply

statements (i)-(iii) to proving S is right simply semigroup.
Let φ 6= I is a right ideal of (a)N and y ∈ (a)N . For z ∈ I by (z)N = (a)N and

statement (iii) then z2Sl =
⋃{(t)N | t ∈ z2Sl} Since z2 ∈ z2Sl so (a)N = (z)N =

(z2)N ⊆ z2Sl. Hence, for y ∈ (a)N . Let y = z2u = z(zu)(∃u ∈ Sl) by N ∈ SC(S)
we have (y, yz2u) ∈ N and

(zu)N = (z)N (u)N = (y)N (u)N , ((z)N = (y)N )
= (yz2u)N (u)N , ((y)N = (yz2u)N )
= (yz2u2)N = (yz2u)N = (y)N = (a)N
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so zu ∈ (a)N . By z ∈ I and zu ∈ (a)N we have y = z(zu) ∈ I by I is right ideal of
S. So (a)N is right simply.

(4) ⇒ (5). It is clear by using similar technique of proof given in Theorem
2.1(5). The proof is completed. ¤

Applying Theorem 3.1, we may obtain the following theorem.

Theorem 3.3. For a semigroup S, the following statements are equivalent:

(1) S is weakly commutative abundant;

(2) (∀a ∈ S, ∃e ∈ (a)L∗ ∩ E(S), f ∈ (a)R∗ ∩ E(S),3 a = ae = fa)
n(a) = {y ∈ S | (ae)n ∈ ySly and (fa)m ∈ ysly (∃ n,m ∈ N+)};

(3) (∀a ∈ S, ∃e ∈ (a)L∗ ∩ E(S), f ∈ (a)R∗ ∩ E(S),3 a = ae = fa)
(a)N = {y ∈ S | (ae)n1 ∈ ySly, (fa)n2 ∈ ySly and ym1 ∈ aeSlae, ym2 ∈
faSlfa (∃ ni,mi ∈ N+ i = 1, 2)}

(4) (∀a ∈ S, ∃e ∈ (a)L∗ ∩ E(S), f ∈ (a)R∗ ∩ E(S),3 a = ae = fa)
(a)N is (weakly) bi-Archimedean;

(5) (∃lN ∈ SC(S)) S is a semilattice of (weakly) bi-Archimedean subsemigroups
{(a)N = (ae)N = (fa)N | e ∈ (a)L∗ ∩ E(S), f ∈ (a)R∗ ∩ E(S), ∀a ∈ S}.

Corollary 3.4. For a semigroup S, the following statements are equivalent:

(1) S is weakly commutative superabundant;

(2) (∀a ∈ S, ∃e ∈ (a)H∗ ∩ E(S),3 a = ae = ea)
n(a) = {y ∈ S | (ae)n ∈ ySly and (ea)m ∈ ysly (∃ n,m ∈ N+)};

(3) (∀a ∈ S, ∃e ∈ (a)H∗ ∩ E(S),3 a = ae = ea)
(a)N = {y ∈ S | (ae)n1 ∈ ySly, (ea)n2 ∈ ySly and ym1 ∈ aeSlae, ym2 ∈
eaSlea (∃ ni,mi ∈ N+ i = 1, 2)}

(4) (∀a ∈ S, ∃e ∈ (a)H∗∩E(S),3 a = ae = fa) (a)N is (weakly) bi-Archimedean;

(5) S is the semilattice of (weakly) bi-Archimedean subsemigroups
{(a)N = (ae)N = (ea)N | e ∈ (a)H∗ ∩ E(S), ∀a ∈ S}.

Inclosing this paper, we cite Example 3.5 to illustrate that the applying of
Theorem 3.2 in this paper.

Example 3.5. Let S = {a, b, c, d, e} be a set with Cayley table shown below:
a b c d e

a e d b c e
b b d b d b
c c d c d c
d d d d d d
e e d c d e
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Then, by using the method of Theorem 3.2. we can verify that S is a semigroup
with the following propositions:

(1) (a)N = {a, e}; (b)N = {b, d}; (c)N = {c};
(a)L∗ = {a, e}; (b)L∗ = {b, c}; (d)L∗ = {d};
(a)R∗ = {a, e}; (c)R∗ = {c}; (d)R∗ = {b, d};
E(s) = {c, d, e} = Re g(s);
N = {(a, a), (b, b), (c, c), (d, d), (e, e), (b, d), (d, b), (a, e), (e, a)};
τ = N ⋃{(a, c), (c, a), (c, e), (e, c)};
N∗ = N ⋃{(b, c)(c, b)(d, c)(c, d)};
σ = S × S.

(2) S is weakly commutative abundant but is not commutative;
(3)N is the unique element of SC(S){N , τ,N∗, σ} such that S = (e)N

⋃
(c)N

⋃
(d)N

in which (a)N is is bi-Archimedean, for x = e or c or d.
(4) Since a 6∈ Re g(s) so S is not regular.
(5) (a)N∗ = {a, e} and (b)N∗ = {b, c, d} are weakly commutative abundant, but

(b)N∗ is not bi-Archimedean. That is, S is a semilattice of weakly commutative
abundant subsemigroups (a)N∗ and (b)N∗ but is not a semilattice of (weakly) bi-
Archimedean subsemigroups for N ∗ ∈ SC(S).
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