Commutative Semigroups whose Proper Homomorphic Images are All of Smaller Cardinality

Ralph P. Tucci

Department of Mathematics and Computer Science, Loyola University New Orleans, New Orleans, LA 70118, U.S.A.

 $e ext{-}mail: tucci@loyno.edu$

ABSTRACT. We characterize those commutative semigroups S such that every non-isomorphic homomorphic image of S has smaller cardinality than S. We also characterize commutative groups with the same property.

In [3] Kaplansky posed the following problem for an infinite commutative group G: Show that every proper (not isomorphic) homomorphic image of G is finite if and only if G is an infinite cyclic group. In [2] Jensen and Miller characterized all infinite commutative semigroups S such that every proper homomorphic image of S is finite; they called such semigroups homomorphically finite or S such that every proper homomorphic image of S is of smaller cardinality than S. We call such semigroups S such that every proper homomorphic image of S is of smaller semigroups are precisely those in Jensen and Miller's Theorem. As part of the proof of this fact we also generalize the exercise in Kaplansky by showing that, if S is an infinite commutative group, then every proper homomorphic image of S is of smaller cardinality than S if and only if S is an infinite cyclic group.

For any semigroup S let S^0 , S^1 , and $S^{0,1}$ denote S with zero adjoined, S with identity adjoined, and S with both zero and identity adjoined, respectively. The group of integers is denoted \mathbb{Z} . The symbol \mathbb{N}' stands for any subsemigroup of $(\mathbb{N},+)$, the semigroup of positive integers under addition. We now state Jensen and Miller's theorem.

Theorem 1 [2, Theorem 3]. Let S be an infinite commutative semigroup. Then every proper homomorphic image of S is finite if and only if S is either \mathbb{Z} , \mathbb{Z}^0 , \mathbb{N}' , $(\mathbb{N}')^0$, $(\mathbb{N}')^1$, or $(\mathbb{N}')^{0,1}$.

We let |X| denote the cardinality of X for any set X. Throughout the rest of this note S will denote an infinite commutative H-smaller semigroup. Our result follows easily from the following lemmas, which are taken almost without change from [2].

Received November 5, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 20M14, 20M15.

Key words and phrases: semigroup, commutative, homomorphic image, cardinality.

Lemma 2. If I is a nonzero ideal of S, then |I| = |S|.

Proof. If $I \neq 0$, then |S/I| < |S|. But $S = (S \setminus I) \cup I$ so that $|S| = |S \setminus I| + |I| = |S/I| + |I|$, which implies that |S| = |I|.

Lemma 3.

- (a) If S has no zero, then S embeds in a group.
- (b) If S has a zero, then $S \setminus \{0\}$ embeds in a group.

Proof. It suffices to show that S or $S \setminus \{0\}$ is cancellative. First we show that if $0 \in S$ then S has no nonzero nilpotent elements. Let $s \in S$ be nilpotent of index n. Then the ideal $s^{n-1}S^1 = \{s^{n-1}t \mid t \in S^1 \setminus sS^1\}$ satisfies $|s^{n-1}S^1| \leq |S^1/sS^1| < |S|$. By Lemma 2 it follows that s = 0.

Now we show that if $0 \in S$ then $S \setminus 0$ is closed under multiplication. Let $s, t \in S$ with st = 0, and assume that $s \neq 0$. Then $(sS \cap tS)^2 = 0$ so that $sS \cap tS = 0$. Hence tS embeds in S/sS so |tS| < |S|, and Lemma 2 implies that tS = 0. In particular, $t^2 = 0$, so by the previous paragraph t = 0.

Finally we show that S or $S \setminus 0$ is cancellative. Let $0 \neq s \in S$ and define the congruence ρ_s by the following: if $a, b \in S$ then $a\rho_s b$ if and only if as = bs. By the previous paragraphs $sS \neq 0$. Then $|S| = |sS| = |S/\rho_s|$ so that ρ_s is the identity congruence, and hence a = b.

Lemma 4. The group of quotients of S or $S \setminus \{0\}$ is countable.

Proof. Let G be the group of quotients of S or $S \setminus \{0\}$. We first show that G is H-smaller. Clearly, |G| = |S|. Let ρ be a congruence on G which is not 1-1. Suppose that $\frac{a}{b}\rho\frac{c}{d}$ for distinct $\frac{a}{b}$, $\frac{c}{d} \in G$. Then $((\frac{a}{b})bd)\rho((\frac{c}{d})bd)$; i.e., $ad \ \rho \ bc$ and $ad \neq bc$. Thus, ρ is not 1-1 on S so that $|S/\rho| < |S|$, and hence $|G/\rho| < |G|$.

It is now easy to see that G is countable. Let $g \in G$ be any non-identity element and let $K = \langle g \rangle$ be the group generated by g. Then |G| = |K||G/K| and |G/K| < |G|, so |G| = |K| where K is countable.

Corollary 5. Let G be an infinite commutative group. Then G is H-smaller if and only if $G \cong \mathbb{Z}$.

Proof. This follows from the proof of the previous lemma. \Box

Theorem 6. Let S be an infinite commutative semigroup. Then the following are equivalent:

- (1) S is H-smaller;
- (2) S is HF;
- (3) S is one of the following: \mathbb{Z} , \mathbb{Z}^0 , \mathbb{N}' , $(\mathbb{N}')^0$, $(\mathbb{N}')^1$, or $(\mathbb{N}')^{0,1}$.

Proof. (1) \Rightarrow (2). By Lemma 4, S is countable and H-smaller, and hence HF.

- $(2) \Rightarrow (1)$. This follows by definition.
- $(2) \Leftrightarrow (3)$. This is Theorem 1, Jensen and Miller's Theorem.

Acknowledgement. The author would like to thank the referee for his comments, which substantially improved this paper.

References

- [1] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Amer. Math. Soc., Providence, Rhode Island, 1(1961).
- [2] B. A. Jensen and D. W. Miller, Commutative Semigroups Which Are Almost Finite, Pacific J. Math., 27(1968), 533-538.
- [3] I. Kaplansky, Infinite Abelian Groups, The University of Michigan Press, Ann Arbor, Michigan, 1954.