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Abstract. In the present paper, we give the applications of the optimum bound for

Bernstein basis functions. It is noted that using the optimum bound the main results of

Aniol and Taberska [Ann. Soc. Math. Pol. Seri, Commentat. Math., 30(1990), 9-17],

[Approx. Theory and its Appl. 11:2(1995), 94-105] and V. Gupta [Soochow J. Math.,

23(1)(1997) 115-118] can be improved which were not pointed out earlier.

1. Introduction

Durrmeyer [4] introduced the integral modification of the Bernstein polynomials
to approximate Lebesgue integrable functions on the interval [0, 1]. The operators
introduced by Durrmeyer are defined as

(1.1) Bn(f, x) = (n + 1)
n∑

k=0

pn,k(x)
∫ 1

0

pn,k(t)f(t)dt, x ∈ [0, 1],

where pn,k(x) =
(
n
k

)
xk(1−x)n−k. Guo [5] estimated the rate of convergence for the

operator (1.1) for functions of bounded variation, using some results of probability
theory. After this Aniol and Taberska (see e.g. [1] and [2]) generalized and extended
the results of Guo [5]. Recently Gupta [6] introduced a slight but interesting integral
modification of the Bernstein polynomials and studied the rate of convergence for
functions of bounded variation. The operators introduced by Gupta [6] are defined
by

(1.2) Pn(f, x) =
n∑

k=0

pn,k(x)
∫ 1

0

bn,k(t)f(t)dt, x ∈ [0, 1],

where pn,k = (−1)k xk

k!
Φ(k)

n (x), bn,k(t) = (−1)k+1 tk

k!
Φ(k+1)

n (t), bn,n(t) = 0 and

Φn(x) = (1− x)n.
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We can easily check, by simple computation that the terms pn,k(x) in the above
definition (1.1) and (1.2) are same. Although the rate of convergence for the op-
erator (1.2) is same as that of the usual Durrmeyer operators (1.1), but some ap-
proximation properties and analysis become simpler for the integral modification
of Bernstein polynomials defined by (1.2). For Bernstein basis function, Guo [5]
proved the following inequality:

(1.3) pn,k(x) ≤ C{nx(1− x)}−1/2, C = 2.5, x ∈ (0, 1) and 0 ≤ k ≤ n.

Aniol and Toberska ([1] and [2]) have considered the above constant C = 2, they
have taken this constant from an old paper of Herzog and Hill [7]. Later Bastien
and Rogalski [3] gave the optimum bound for Bernstein basis function which we
mention in the form of following lemma:

Lemma 1.1 ([3]). For x ∈ (0, 1), 0 ≤ k ≤ n and for all n ∈ N, we have

pn,k(x) ≤ 1√
2enx(1− x)

,

where the estimate coefficient 1/
√

2e and the estimation order n−1/2 are the best
possible.

In the present paper, we give some applications of this bound to sharp the
earlier known results due to Aniol and Taberska [1], [2] and Gupta [6].

2. Applications

In this section, we give some applications of our theorem.
(i). For the Durrmeyer operator (1.1), by using Lemma 1.1 and proceeding

along the lines of Aniol and Taberska [1], we have the sharp estimate as follows:

Theorem 2.1. Suppose f ∈ L∞0 (the class of all complex valued functions bounded
and measurable on [0, 1]) and at a fixed point x ∈ (0, 1), the one sided limits f(x±0)
exist. Let a, b be arbitrary numbers such that x ≤ a ≤ 1, 1 − x ≤ b ≤ 1. Then if
nx2 ≥ 4a2 and n(1− x)2 ≥ 4b2, we have

∣∣∣Bn(f, x)− 1
2
{f(x+) + f(x−)}

∣∣∣ ≤
(4
√

2e + 1
2
√

2e

)
{nx(1− x)}−1/2|f(x+)− f(x−)|

+
1
a2

{
8

µ∑

j=1

vj

(
gx; x− ja√

n
, x

)

j3
+

2vµ(gx, 0, x)
µ2

}

+
1
b2

{
8

σ∑

j=1

vj

(
gx; x, x +

jb√
n

)

j3
+

2vσ(gx; x, l)
σ2

}
,
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where µ =
[x
√

n

a

]
, σ =

[ (1− x)
√

n

b

]
and gx is as defined in Theorem 1 of [1].

It is remarked here that the estimate of Aniol and Taberska [1, Theorem 1],

i.e., 7
2{nx(1 − x)}−1/2|f(x+) − f(x−)| can be improved to

(4
√

2e + 1
2
√

2e

)
{nx(1 −

x)}−1/2|f(x+)− f(x−)|.
In the other paper of Aniol and Taberska [2], for the case of Bernstein-Durrmeyer

operator, by using Lemma 1.1, the term |∆n(x)| ≤ 7{nx(1− x)}−1/2 considered in

[2, p. 102] can be improved to |∆n(x)| ≤ 4
√

2e + 1√
2e

{nx(1− x)}−1/2.

(ii). For the operator (1.2), by theorem 1.1 and proceeding along the lines of
[5],our sharp estimate is as follows:

Theorem 2.2. Let f be a function of bounded variation on the interval [0, 1]. Then
for x ∈ [0, 1] and n sufficiently large, we have

∣∣∣Pn(f, x)− 1
2
{f(x+) + f(x−)}

∣∣∣

≤ 5
(
x(1− x)

)−1

n

n∑

k=1

V
x+(1−x)/

√
k

x−x/
√

k
(gx) +

1
2
√

2enx(1− x)
|f(x+)− f(x−)|,

where V b
a (gx) is the total variation of gx on [a, b] as defined in [6].

It is remarked that the estimate of main theorem of [6], i.e.,
5{x(1− x)}−1/2

4
√

n
|f(x+)−

f(x−)| can be improved to
2{2ex(1− x)}−1/2

√
n

|f(x+)− f(x−)|.
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