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Abstract. We prove the following results:

(1) Let R be a strongly euclidean semiring. Then an ideal A of Rn×n is a partitioning
ideal if and only if it is a subtractive ideal.

(2) A monic ideal M of R[x], where R is a strongly euclidean semiring, is a partitioning
ideal if and only if it is a subtractive ideal.

1. Introduction

Throughout this paper all semirings are with a multiplicative identity. Z+ will
denote the set of all non negative integers. For the terminology, we refer [1], [2] and
[4]. A right ideal I of a semiring R is called subtractive if a, a + b ∈ I, b ∈ R then
b ∈ I. An ideal I of a semiring R is called partitioning ideal if there exists a subset
Q of R such that:

1. R = ∪{q + I : q ∈ Q}.
2. If q1, q2 ∈ Q then q1 = q2 if and only if (q1 + I) ∩ (q2 + I) 6= ∅.

A commutative semiring R is called strongly euclidean [5] if there exists a function
d : R−{0} → Z+ such that (1) d(ab) ≥ d(a) for all a, b ∈ R−{0}, and (2) if a, b ∈ R
with b 6= 0 then there exist unique q, r ∈ R such that a = bq + r where either r = 0
or d(r) < d(b). Let R = (Z+, +, ·). Then R is a strongly euclidean semiring. Every
strongly euclidean semiring is a euclidean semiring [4].

Lemma 1.1 [4, Corollary 8.23, p. 102]. If I is a partitioning ideal of a semiring R
then I is a subtractive ideal of R.

The converse of the above lemma is not true. The following example is suggested
by the referee.
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Let R = (Z+, gcd, lcm). Then the ideal 2Z+ of R is subtractive but not
partitioning.

Lemma 1.2 [4, Proposition 12.14, p. 138]. If I is a subtractive right ideal of a right
euclidean semiring R then I is a principal right ideal of R.

Lemma 1.3 [5]. If I is a principal ideal of a strongly euclidean semiring R then I
is a partitioning ideal of R.

From the above Lemmas, we obtain:

Theorem 1.4. Let R be a strongly euclidean semiring. Then the following state-
ments are equivalent.

1. I is a partitioning ideal of R.

2. I is a subtractive ideal of R.

3. I is a principal ideal of R.

2. Full matrix semirings

The full matrix semirings of all n×n matrices over a semiring R will be denoted
by Rn×n. We will show that if R is a strongly euclidean semiring then an ideal A
of Rn×n is a partitioning ideal if and only if it is a subtractive ideal.

The following lemma can be proved easily.

Lemma 2.1. I is a subtractive ideal of a semiring R if and only if In×n is a sub-
tractive ideal of Rn×n.

Lemma 2.2. If I is a partitioning ideal of a semiring R then In×n is a partitioning
ideal of Rn×n.
Proof. Let I be a partitioning ideal of R. Then there exists a subset Q of R such that
R = ∪{q+I : q ∈ Q} and if q1, q2 ∈ Q then q1 = q2 if and only if (q1+I)∩(q2+I) 6= ∅.
Let [aij ] ∈ Rn×n, where aij ∈ R for each i and j. Hence there exist qij ∈ Q,
xij ∈ I such that aij = qij + xij . Now [aij ] = [qij ] + [xij ] ∈ [qij ] + In×n. So
[aij ] ∈ ∪{[qij ] + In×n : [qij ] ∈ Qn×n}. Now Rn×n = ∪{[qij ] + In×n : [qij ] ∈ Qn×n}.
Let [qij ], [q′ij ] ∈ Qn×n, where qij , q

′
ij ∈ Q. Suppose ([qij ]+In×n) ∩ ([q′ij ]+In×n) 6= ∅.

Let [aij ] ∈ ([qij ] + In×n) ∩ ([q′ij ] + In×n). Then aij ∈ (qij + I) ∩ (q′ij + I). Hence
qij = q′ij . Now, [qij ] = [q′ij ]. So In×n is a partitioning ideal of Rn×n. ¤
Theorem 2.3. Let R be a strongly euclidean semiring. Then an ideal A of Rn×n

is a partitioning ideal if and only if it is a subtractive ideal.
Proof. Let A be an ideal of Rn×n. Then A = In×n for some ideal I of R. Suppose A
is a partitioning ideal of Rn×n. Then A is a subtractive ideal of Rn×n, by Lemma
1.1. Conversely, suppose A = In×n is a subtractive ideal of Rn×n. Then I is a
subtractive ideal of R. By Theorem 1.4, I is a partitioning ideal of R. Hence In×n

is a partitioning ideal of Rn×n, by Lemma 2.2. ¤
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3. Polynomial semirings

In this section, we will show that a monic ideal M of a polynomial semiring
R[x] where R is a strongly euclidean semiring, is a partitioning ideal if and only if
it is a subtractive ideal. An ideal M of R[x] where R is a commutative semiring, is

called a monic ideal if
n∑

i=0

aix
i ∈ M implies aix

i ∈ M for each i. Let A be an ideal

of a commutative semiring R[x]. Define Ai = {a ∈ R : there exists f ∈ A such that
axi is a term of f}. Then Ai is an ideal of R. It is called a coefficient ideal of R.

Lemma 3.1 [2]. Let M be a monic ideal of R[x] where R is a commutative semir-
ing. Then M is a subtractive ideal of R[x] if and only if Mi is a subtractive ideal
of R for each i.

Lemma 3.2. Let M be a monic ideal of R[x] where R is a commutative semiring.
If Mi is a partitioning ideal of R for each i then M is a partitioning ideal of R[x].
Proof. Let Mi be a partitioning ideal of R for each i. Then there exits a subset Qi

of R such that R = Ri = ∪{qi + Mi : qi ∈ Qi} and if qi, q
′
i ∈ Qi then qi = q′i if

and only if (qi + Mi) ∩ (q′i + Mi) 6= ∅ for each i. Define Q =
{ ∑

finite

qix
i : qi ∈ Qi,

for each i

}
. Let

n∑
i=0

rix
i ∈ R[x], where ri ∈ R. For each i, ri = qi + ai, for

some ai ∈ Mi. Thus there exists a polynomial h(x) ∈ M such that aix
i is a term

of h(x). Since M is monic, aix
i ∈ M . Now

n∑
i=0

rix
i =

n∑
i=0

qix
i +

n∑
i=0

aix
i, where

n∑
i=0

qix
i ∈ Q and

n∑
i=0

aix
i ∈ M . Now

n∑
i=0

rix
i ∈ ∪{q(x) + M : q(x) ∈ Q}. So

R[x] = ∪{q(x)+M : q(x) ∈ Q}. Let
∑

finite

qix
i,

∑
finite

q′ix
i ∈ Q where qi, q

′
i ∈ Qi. Sup-

pose
( ∑

qix
i +M

)
∩

( ∑
q′ix

i +M

)
6= ∅. Let

∑
qix

i +
∑

aix
i =

∑
q′ixi +

∑
bix

i

for some
∑

aix
i,

∑
bix

i ∈ M . Then qi + ai = q′i + bi for some ai, bi ∈ Mi. Hence
(qi + Mi) ∩ (q′i + Mi) 6= ∅. So qi = q′i. Now

∑
finite

qix
i =

∑
finite

q′ix
i. Hence M is a

partitioning ideal of R[x]. ¤
Theorem 3.3. Let M be a monic ideal of R[x] where R is a strongly euclidean
semiring. Then M is a partitioning ideal of R[x] if and only if it is a subtractive
ideal.
Proof. Let M be a partitioning ideal of R[x]. By Lemma 1.1, M is subtractive.
Conversely, let M be a subtractive ideal of R[x]. By Lemma 3.1, Mi is subtractive
for each i. By Theorem 1.4, Mi is a partitioning ideal of R. Hence M is a parti-
tioning ideal of R[x], by Lemma 3.2. ¤
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