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Abstract. In this paper, we present the explicit formula of the generalized inverse A
(2)
T,S ,

and we apply this result to solve restricted linear equation Ax + y = b, x ∈ T, y ∈ S and

Ax + By = b, x ∈ T, y ∈ S.

1. Introduction

In their seminal paper, [2] Bott and Duffin introduced and widely used an impor-
tant tool called the “constrained inverse” of the matrix. This inverse is called Bott-
Duffin inverse(A(−1)

(T ) = PT (APT +PT⊥)−1), Ben Israel and Greville in [1] have men-
tioned many properties and applications. Later, Y. Chen in his paper [5] defined the
generalized Bott-Duffin inverse and gave some properties and applications, G. Chen,
G. Liu, Y. Xue in papers [3], [4], [6] defined L-zero matrices in order to simplify
the expression of the generalized Bott-Duffin inverse(A(+)

(T ) = PT (APT + PT⊥)+).

In [10], we have discussed another constrained inverse A
(−1)
T,S , which is defined by

A
(−1)
T,S = PT,S(APT,S +PS,T )−1 of a matrix A ∈ Cn×n, where T and S are subspaces

of Cn such that T ⊕S = Cn. Through considering the properties of this constrained
inverse, we establish the relation between the common important generalized inverse
and the inverse, see Lemma 4 and Lemma 5.

It is well known that many common important generalized inverse such as the
Moore-Penrose inverse A+, the Drazin inverse A(d), the Group inverse A#, the
Boot-Duffin inverse A

(−1)
(L) and so on, are all generalized inverse A

(2)
T,S , which is a

{2}-inverse of A having the prescribed range T and null space S. In this paper, we
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present the explicit formula of the generalized inverse A
(2)
T,S , i.e., we also establish

the relation between the A
(2)
T,S and the inverse, and we apply this result to solve

restricted linear equations

(1.1) Ax + y = b, x ∈ T, y ∈ S

and

(1.2) Ax + By = b, x ∈ T, y ∈ S.

We adopt in this paper the same notations on generalized inverse of matrices
as those in [1]. And throughout the article (if we don’t mention specially). Let I
be the identity (unit) matrix, ei be the ith column of I. A ∈ Cm×n

t and let T be a
subspace of Cn, S be a subspace of Cm, with dim(T ) = r ≤ t, and dim(S) = m− r.
Let {ε1, ε2, · · · , εr} be the basis of T , and {ε1, ε2, · · · , εn} be the basis of Cn. Let
{ηr+1, · · · , ηm} be the basis of S, and {η1, · · · , ηm} be the basis of Cm. Let

E1 = (ε1, ε2, · · · , εr), E2 = (εr+1, εr+2, · · · , εn), E = (E1, E2).

F1 = (η1, η2, · · · , ηr), F2 = (ηr+1, ηr+2, · · · , ηm), F = (F1, F2).

For any A ∈ Cm×n, we denote by

R(A) = {y ∈ Cm : y = Ax for some x ∈ Cn} : the Range of A.

N(A) = {x ∈ Cn : Ax = 0} : the Null space of A.

Lemma 1 ([1]). Let A ∈ Cm×n
t and let T be a subspace of Cn, let S be a subspace

of Cm, dim(T ) = r ≤ t, dim(S) = m − r. Then A has a {2}-inverse X such that
R(X) = T , N(X) = S if and only if one of the following conditions is satisfied:

(1) AT ⊕ S = Cm;

(2) A∗S⊥ ⊕ T⊥ = Cn;

(3) PS⊥AT = S⊥;

(4) PT A∗S⊥ = T.

in which case X is unique.

Lemma 2 ([7], [8]). Let A ∈ Cm×n
r , T be a subspace of Cn, b ∈ AT , T∩N(A) = 0.

Then the unique solution of Ax = b, (x ∈ T ) is given by x = A
(2)
T,Sb for any subspace

of S of Cm satisfying AT ⊕ S = Cm.

Lemma 3 ([9]). Let A ∈ Cm×n, B ∈ Cm×m
m , and C ∈ Cn×n

n . Then:

R(AC) = R(A) = B−1R(BA)(1.3)
N(BA) = N(A) = CN(AC)(1.4)
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Lemma 4 ([10]). If A ∈ Cm×n, then

(1)A+ = A∗(AA∗ + PN(A∗))−1

(2) A+ = (A∗A + PN(A))−1A∗.

Lemma 5 ([10]).

(1) If A ∈ Cn×n and ind(A)=1, then

A# = PR(A),N(A)(A + PN(A),R(A))−1.

(2) If A ∈ Cn×n and ind(A) = k > 1, then ∀l ≥ k

A(d) = PR(Al),N(Al)(APR(Al),N(Al) + PN(Al),R(Al))
−1.

2. Main results

Theorem 1. Let A ∈ Cm×n
t and let T be a subspace of Cn, let S be a subspace of

Cm, dim(T ) = r ≤ t, dim(S) = m− r and AT ⊕ S = Cm. Then:

A
(2)
T,S = PT E

(
I
0

)
(APT E

(
I
0

)
+ PSF )−1,

(
I
0

)
∈ Cn×m, if m ≤ n(2.1)

A
(2)
T,S = PT E

(
I 0

)
(APT E

(
I 0

)
+ PSF )−1,

(
I 0

) ∈ Cn×m, if n ≤ m(2.2)

A
(2)
T,S = (E1, 0)(AE1, F2)−1(2.3)

= (ε1, ε2, · · · , εr, 0, · · · , 0)(Aε1, Aε2, · · · , Aεr, ηr+1, · · · , ηm)−1, (E1, 0) ∈ Cn×m.

Proof. From PT E = PT (ε1, ε2, · · · , εn) = (ε1, ε2, · · · , εr, 0, · · · , 0), it follows
that PT = (ε1, ε2, · · · , εr, 0, · · · , 0)(ε1, ε2, · · · , εn)−1 = (E1, 0)E−1 and PS =

(0, · · · , 0, ηr+1, · · · , ηm)(η1, · · · , ηm)−1 = (0, F2)F−1. So APT E

(
I
0

)
+ PSF =

(Aε1, Aε2, · · · , Aεr, ηr+1, · · · , ηm). From AT⊕S = Cn and Aspan{ε1, ε2, · · · , εr} =
AT , we can easily get (Aε1, Aε2, · · · , Aεr, ηr+1, · · · , ηm) is nonsingular. Let

D = PT E

(
I
0

)
(APT E

(
I
0

)
+ PSF )−1.

Thus

D = (ε1, ε2, · · · , εr, 0, · · · , 0)
(

I
0

)
(A(ε1, ε2, · · · , εr, 0, · · · , 0)

(
I
0

)

+ (0, · · · , 0, ηr+1, · · · , ηm))−1 = (E1, 0)(AE1, F2)−1, (E1, 0) ∈ Cn×m.



568 Bin Deng and Guo-Liang Chen

For (AE1, F2) is nonsingular, we can get R(D) = R(E1, 0) = T. From Lemma 3,
N(D) = (AE1, F2)N(E1, 0).

Let x =




x1

x2

...
xn


 ∈ N(E1, 0), then (ε1, ε2, · · · , εr, 0, · · · , 0)




x1

x2

...
xn


 = 0 = x1ε1 + · · ·+

xrεr. Since ε1, ε2, · · · , εr are linear independence, we can get x1 = x2 = · · · = xr =
0. So we can take er+1, · · · , en as the basis of N(E1, 0). Then

N(D) = (AE1, F2)N(E1, 0) = (AE1, F2)span{er+1, · · · , en} = span{ηr+1, · · · , ηm} = S.

DAD = (E1, 0)(AE1, F2)−1A(E1, 0)(AE1, F2)−1

= (E1, 0)(AE1, F2)−1((AE1, F2)− (0, F2))(AE1, F2)−1

= (E1, 0)(AE1, F2)−1 − (E1, 0)(AE1, F2)−1(0, F2)(AE1, F2)−1

= D −D(0, F2)(AE1, F2)−1.

From N(D) = S, it follows that D(0, F2)(AE1, F2)−1 = 0, so DAD = D, N(D) = S

and R(D) = T . From Lemma 1(the uniqueness of A
(2)
T,S), we get (5) and (8). In an

analogous manner, we can also get (6). ¤

Remark. Common important generalized inverse such as the Moore-Penrose in-
verse A+, the Drazin inverse A(d), the Group inverse A#, the Boot-Duffin inverse
A

(−1)
(L) are all generalized inverse A

(2)
T,S , from (7) or (8), we can get explicit formulas

of these important generalized inverse when we take different T and S.

In [1], it has discussed the solution of the equation Ax + y = b, x ∈ L, y ∈ L⊥,
similarly we can get next theorem.

Theorem 2. Let A ∈ Cm×n
t and let T be a subspace of Cn, let S be a subspace of

Cm, dim(T ) = r ≤ t, dim(S) = m− r and AT ⊕ S = Cm. Then:

Ax + y = b, x ∈ T, y ∈ S,

has for every b, the unique solution

x = A
(2)
T,Sb,(2.4)

y = (I −AA
(2)
T,S)b.(2.5)

Proof. Firstly, we will prove Ax + y = b, x ∈ T, y ∈ S has solution is equivalent to
that

(2.6) (APT E

(
I
0

)
+ PSF )z = b
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has solution, when m ≤ n.

(Sufficiency) (2.6) has solution, then take x = PT E

(
I
0

)
z ∈ T , y = PSF ∈ S.

(Necessity) ∀z =




z1

z2

...
zm


,

(APT E

(
I
0

)
+ PSF )z = A(E1, 0)




z1

z2

...
zm


 + (0, F2)




z1

z2

...
zm




= z1Aε1 + · · ·+ zrAεr + zr+1ηr+1 + · · ·+ zmηm

= A(z1ε1 + · · ·+ zrεr) + zr+1ηr+1 + · · ·+ zmηm

= Ax + y = b.

Since ε1, ε2, · · · , εr are the basis of T , ηr+1, · · · , ηm are the basis of S, x ∈ T, y ∈ S,

we can solve z. From AT⊕S = Cn, we have known APT E

(
I
0

)
+PSF is nonsingular.

So Ax+y = b has solution x = PT E

(
I
0

)
(APT E

(
I
0

)
+PSF )−1b = A

(2)
T,Sb (Theorem

1). When n ≤ m, we can get the conclusion similarly. ¤

Remark. Only b ∈ AT, Ax = b, x ∈ T is consistent and has a solution. It is the
case that Lemma 2 has discussed. But when AT⊕S = Cm, Ax+y = b, x ∈ T, y ∈ S
is always consistent and has a unique solution.

Example.
Ax + y = b, x ∈ R(A∗), y ∈ N(A∗).

A =




1 0 −1 0
0 1 1 0
1 0 0 1
2 1 0 1


 , b =




0
1
1
0


 .

From Theorem 2, we know x = A+b.

Taking ε1 =




1
0
−1
0


 , ε2 =




0
1
1
0


 , ε3 =




1
0
0
1


 , η4 =




1
1
1
−1


 .

Then A(ε1, ε2, ε3) =




2 −1 1
−1 2 0
1 0 2
2 1 3


 . (Aε1, Aε2, Aε3, η4)−1 = 1

4




3 1 −3 1
1 2 −2 1
−2 −1 3 0
1 1 1 −1


 .
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A+ = (ε1, ε2, ε3, 0)(Aε1, Aε2, Aε3, η4)−1 = 1
4




1 0 0 1
1 2 −2 1
−2 1 1 0
−2 −1 3 0


 .

x = A+b =




0
0
1
2
1
2


 , y = b−Ax =




1
2
1
2
1
2
− 1

2


 .

Similar to Theorem 1 and Theorem 2, we can get

Theorem 3. Let A ∈ Cm×n
t , B ∈ Cm×m, m ≤ n and let T be a subspace of Cn,

let S be a subspace of Cm, dim(T ) = r ≤ t, dim(S) = m− r and AT ⊕BS = Cm,
then

Ax + By = b, x ∈ T, y ∈ S,

has for every b, the unique solution

x = PT E

(
I
0

)
(APT E

(
I
0

)
+ BPSF )−1b,(2.7)

y = PSF (APT E

(
I
0

)
+ BPSF )−1b.(2.8)

Theorem 4. Let A ∈ Cn×n
t , B ∈ Cn×n and T , S be a subspace of Cn, dim(T ) =

r ≤ t, dim(S) = n− r, AT ⊕BS = Cn and T ⊕BS = Cn, then

(2.9) PT E(APT E + BPSF )−1 = (APT,BS)(2)T,BS .

Proof. Similar to Theorem 2, since AT ⊕ BS = Cn, APT E

(
I
0

)
+ BPSF is

nonsingular. Let {ε1, ε2, · · · , εr} be the basis of T , {ε1, ε2, · · · , εn} be the ba-
sis of Cn, {ηr+1, · · · , ηn} be the basis of S, and {η1, · · · , ηn} be another ba-
sis of Cn. E1 = (ε1, ε2, · · · , εr), E2 = (εr+1, ε2, · · · , εn), E = (E1, E2). F1 =
(η1, · · · , ηr), F2 = (ηr+1, · · · , ηn), F = (F1, F2). Let

D = PT E(APT E + BPSF )−1

= (ε1, ε2, · · · , εr, 0, · · · , 0)(Aε1, Aε2, · · · , Aεr, Bηr+1, · · · , Bηn)−1.

So R(D) = R(ε1, ε2, · · · , εr) = T. From Lemma 3,

N(D) = (Aε1, Aε2, · · · , Aεr, Bηr+1, · · · , Bηn)N((ε1, ε2, · · · , εr, 0, · · · , 0))
= (Aε1, Aε2, · · · , Aεr, Bηr+1, · · · , Bηn)span{er+1, · · · , en}
= span{Bηr+1, · · · , Bηn} = BS.
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DAPT,BSD = PT E(APT E + BPSF )−1APT,BSPT E(APT E + BPSF )−1

= PT E(APT E + BPSF )−1APT E(APT E + BPSF )−1

= PT E(APT E + BPSF )−1(APT E + BPSF −BPSF )(APT E + BPSF )−1

= D −DBPSF (APT E + BPSF )−1.

R(BPSF (APT E + BPSF )−1) = R(BPSF ) = span{Bηr+1, · · · , Bηn} = N(D). So
DBPSF (APT E + BPSF )−1 = 0, i.e., DAPT,BSD = D. From the uniqueness of
A

(2)
T,S , we can get the conclusion. ¤
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