Explicit Formulas of the Generalized Inverse $A_{T, S}^{(2)}$ and Its Applications

Bin Deng
Department of Mathematics, East China Normal University, Shanghai, 200062, P.
R. China
e-mail: dengbinboy@hotmail.com
Guo-Liang Chen
Department of Mathematics, East China Normal University, Shanghai, 200062, P. R. China
e-mail: glchen@math.ecnu.edu.cn

Abstract. In this paper, we present the explicit formula of the generalized inverse $A_{T, S}^{(2)}$, and we apply this result to solve restricted linear equation $A x+y=b, x \in T, y \in S$ and $A x+B y=b, x \in T, y \in S$.

1. Introduction

In their seminal paper, [2] Bott and Duffin introduced and widely used an important tool called the "constrained inverse" of the matrix. This inverse is called BottDuffin inverse $\left(A_{(T)}^{(-1)}=P_{T}\left(A P_{T}+P_{T^{\perp}}\right)^{-1}\right)$, Ben Israel and Greville in [1] have mentioned many properties and applications. Later, Y. Chen in his paper [5] defined the generalized Bott-Duffin inverse and gave some properties and applications, G. Chen, G. Liu, Y. Xue in papers [3], [4], [6] defined L-zero matrices in order to simplify the expression of the generalized Bott-Duffin inverse $\left(A_{(T)}^{(+)}=P_{T}\left(A P_{T}+P_{T^{\perp}}\right)^{+}\right)$. In [10], we have discussed another constrained inverse $A_{T, S}^{(-1)}$, which is defined by $A_{T, S}^{(-1)}=P_{T, S}\left(A P_{T, S}+P_{S, T}\right)^{-1}$ of a matrix $A \in C^{n \times n}$, where T and S are subspaces of C^{n} such that $T \oplus S=C^{n}$. Through considering the properties of this constrained inverse, we establish the relation between the common important generalized inverse and the inverse, see Lemma 4 and Lemma 5.

It is well known that many common important generalized inverse such as the Moore-Penrose inverse A^{+}, the Drazin inverse $A^{(d)}$, the Group inverse $A^{\#}$, the Boot-Duffin inverse $A_{(L)}^{(-1)}$ and so on, are all generalized inverse $A_{T, S}^{(2)}$, which is a \{2\}-inverse of A having the prescribed range T and null space S. In this paper, we

Received July 20, 2005, and, in revised form, September 5, 2005.
2000 Mathematics Subject Classification: 15A03, 15A09.
Key words and phrases: generalized inverse $A_{T, S}^{(2)}$, explicit formulas, restricted linear equation.
present the explicit formula of the generalized inverse $A_{T, S}^{(2)}$, i.e., we also establish the relation between the $A_{T, S}^{(2)}$ and the inverse, and we apply this result to solve restricted linear equations

$$
\begin{equation*}
A x+y=b, \quad x \in T, y \in S \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
A x+B y=b, \quad x \in T, y \in S \tag{1.2}
\end{equation*}
$$

We adopt in this paper the same notations on generalized inverse of matrices as those in [1]. And throughout the article (if we don't mention specially). Let I be the identity (unit) matrix, e_{i} be the i th column of $I . A \in C_{t}^{m \times n}$ and let T be a subspace of C^{n}, S be a subspace of C^{m}, with $\operatorname{dim}(T)=r \leq t$, and $\operatorname{dim}(S)=m-r$. Let $\left\{\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{r}\right\}$ be the basis of T, and $\left\{\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n}\right\}$ be the basis of C^{n}. Let $\left\{\eta_{r+1}, \cdots, \eta_{m}\right\}$ be the basis of S, and $\left\{\eta_{1}, \cdots, \eta_{m}\right\}$ be the basis of C^{m}. Let

$$
\begin{array}{ll}
E_{1}=\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{r}\right), & E_{2}=\left(\varepsilon_{r+1}, \varepsilon_{r+2}, \cdots, \varepsilon_{n}\right), \\
F_{1}=\left(\eta_{1}, \eta_{2}, \cdots, \eta_{r}\right), & F_{2}=\left(\eta_{r+1}, \eta_{r+2}, \cdots, \eta_{m}\right), \quad F=\left(E_{2}\right) .
\end{array}
$$

For any $A \in C^{m \times n}$, we denote by

$$
\begin{aligned}
R(A) & =\left\{y \in C^{m}: y=A x \text { for some } x \in C^{n}\right\}: \text { the Range of } A . \\
N(A) & =\left\{x \in C^{n}: A x=0\right\}: \text { the Null space of } A .
\end{aligned}
$$

Lemma 1 ([1]). Let $A \in C_{t}^{m \times n}$ and let T be a subspace of C^{n}, let S be a subspace of $C^{m}, \operatorname{dim}(T)=r \leq t, \operatorname{dim}(S)=m-r$. Then A has a $\{2\}$-inverse X such that $R(X)=T, N(X)=S$ if and only if one of the following conditions is satisfied:
(1) $A T \oplus S=C^{m}$;
(2) $A^{*} S^{\perp} \oplus T^{\perp}=C^{n}$;
(3) $P_{S^{\perp}} A T=S^{\perp}$;
(4) $P_{T} A^{*} S^{\perp}=T$.
in which case X is unique.
Lemma 2 ([7], [8]). Let $A \in C_{r}^{m \times n}, T$ be a subspace of $C^{n}, b \in A T, T \cap N(A)=0$.
Then the unique solution of $A x=b,(x \in T)$ is given by $x=A_{T, S}^{(2)} b$ for any subspace of S of C^{m} satisfying $A T \oplus S=C^{m}$.

Lemma 3 ([9]). Let $A \in C^{m \times n}, B \in C_{m}^{m \times m}$, and $C \in C_{n}^{n \times n}$. Then:

$$
\begin{align*}
& R(A C)=R(A)=B^{-1} R(B A) \tag{1.3}\\
& N(B A)=N(A)=C N(A C) \tag{1.4}
\end{align*}
$$

Lemma 4 ([10]). If $A \in C^{m \times n}$, then

$$
\begin{aligned}
& \text { (1) } A^{+}=A^{*}\left(A A^{*}+P_{N\left(A^{*}\right)}\right)^{-1} \\
& \text { (2) } A^{+}=\left(A^{*} A+P_{N(A)}\right)^{-1} A^{*}
\end{aligned}
$$

Lemma 5 ([10]).
(1) If $A \in C^{n \times n}$ and $\operatorname{ind}(A)=1$, then

$$
A^{\#}=P_{R(A), N(A)}\left(A+P_{N(A), R(A)}\right)^{-1}
$$

(2) If $A \in C^{n \times n}$ and $\operatorname{ind}(A)=k>1$, then $\forall l \geq k$

$$
A^{(d)}=P_{R\left(A^{l}\right), N\left(A^{l}\right)}\left(A P_{R\left(A^{l}\right), N\left(A^{l}\right)}+P_{N\left(A^{l}\right), R\left(A^{l}\right)}\right)^{-1}
$$

2. Main results

Theorem 1. Let $A \in C_{t}^{m \times n}$ and let T be a subspace of C^{n}, let S be a subspace of $C^{m}, \operatorname{dim}(T)=r \leq t, \operatorname{dim}(S)=m-r$ and $A T \oplus S=C^{m}$. Then:

$$
\begin{align*}
& A_{T, S}^{(2)}=P_{T} E\binom{I}{0}\left(A P_{T} E\binom{I}{0}+P_{S} F\right)^{-1},\binom{I}{0} \in C^{n \times m}, \quad \text { if } m \leq n \tag{2.1}\\
& A_{T, S}^{(2)}=P_{T} E\left(\begin{array}{ll}
I & 0
\end{array}\right)\left(A P_{T} E\left(\begin{array}{ll}
I & 0
\end{array}\right)+P_{S} F\right)^{-1},\left(\begin{array}{ll}
I & 0
\end{array}\right) \in C^{n \times m}, \quad \text { if } n \leq m \tag{2.2}
\end{align*}
$$

(2.3) $A_{T, S}^{(2)}=\left(E_{1}, 0\right)\left(A E_{1}, F_{2}\right)^{-1}$

$$
=\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{r}, 0, \cdots, 0\right)\left(A \varepsilon_{1}, A \varepsilon_{2}, \cdots, A \varepsilon_{r}, \eta_{r+1}, \cdots, \eta_{m}\right)^{-1},\left(E_{1}, 0\right) \in C^{n \times m}
$$

Proof. From $P_{T} E=P_{T}\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n}\right)=\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{r}, 0, \cdots, 0\right)$, it follows that $P_{T}=\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{r}, 0, \cdots, 0\right)\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n}\right)^{-1}=\left(E_{1}, 0\right) E^{-1}$ and $P_{S}=$ $\left(0, \cdots, 0, \eta_{r+1}, \cdots, \eta_{m}\right)\left(\eta_{1}, \cdots, \eta_{m}\right)^{-1}=\left(0, F_{2}\right) F^{-1}$. So $A P_{T} E\binom{I}{0}+P_{S} F=$ $\left(A \varepsilon_{1}, A \varepsilon_{2}, \cdots, A \varepsilon_{r}, \eta_{r+1}, \cdots, \eta_{m}\right)$. From $A T \oplus S=C^{n}$ and $A \operatorname{span}\left\{\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{r}\right\}=$ $A T$, we can easily get $\left(A \varepsilon_{1}, A \varepsilon_{2}, \cdots, A \varepsilon_{r}, \eta_{r+1}, \cdots, \eta_{m}\right)$ is nonsingular. Let

$$
D=P_{T} E\binom{I}{0}\left(A P_{T} E\binom{I}{0}+P_{S} F\right)^{-1}
$$

Thus

$$
\begin{aligned}
D= & \left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{r}, 0, \cdots, 0\right)\binom{I}{0}\left(A\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{r}, 0, \cdots, 0\right)\binom{I}{0}\right. \\
& \left.+\left(0, \cdots, 0, \eta_{r+1}, \cdots, \eta_{m}\right)\right)^{-1}=\left(E_{1}, 0\right)\left(A E_{1}, F_{2}\right)^{-1},\left(E_{1}, 0\right) \in C^{n \times m}
\end{aligned}
$$

For $\left(A E_{1}, F_{2}\right)$ is nonsingular, we can get $R(D)=R\left(E_{1}, 0\right)=T$. From Lemma 3, $N(D)=\left(A E_{1}, F_{2}\right) N\left(E_{1}, 0\right)$.
Let $x=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right) \in N\left(E_{1}, 0\right)$, then $\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{r}, 0, \cdots, 0\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)=0=x_{1} \varepsilon_{1}+\cdots+$
$x_{r} \varepsilon_{r}$. Since $\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{r}$ are linear independence, we can get $x_{1}=x_{2}=\cdots=x_{r}=$ 0 . So we can take e_{r+1}, \cdots, e_{n} as the basis of $N\left(E_{1}, 0\right)$. Then

$$
\begin{aligned}
& N(D)=\left(A E_{1}, F_{2}\right) N\left(E_{1}, 0\right)=\left(A E_{1}, F_{2}\right) \operatorname{span}\left\{e_{r+1}, \cdots, e_{n}\right\}=\operatorname{span}\left\{\eta_{r+1}, \cdots, \eta_{m}\right\}=S \\
& \qquad \begin{aligned}
D A D & =\left(E_{1}, 0\right)\left(A E_{1}, F_{2}\right)^{-1} A\left(E_{1}, 0\right)\left(A E_{1}, F_{2}\right)^{-1} \\
& =\left(E_{1}, 0\right)\left(A E_{1}, F_{2}\right)^{-1}\left(\left(A E_{1}, F_{2}\right)-\left(0, F_{2}\right)\right)\left(A E_{1}, F_{2}\right)^{-1} \\
& =\left(E_{1}, 0\right)\left(A E_{1}, F_{2}\right)^{-1}-\left(E_{1}, 0\right)\left(A E_{1}, F_{2}\right)^{-1}\left(0, F_{2}\right)\left(A E_{1}, F_{2}\right)^{-1} \\
& =D-D\left(0, F_{2}\right)\left(A E_{1}, F_{2}\right)^{-1}
\end{aligned}
\end{aligned}
$$

From $N(D)=S$, it follows that $D\left(0, F_{2}\right)\left(A E_{1}, F_{2}\right)^{-1}=0$, so $D A D=D, N(D)=S$ and $R(D)=T$. From Lemma 1(the uniqueness of $A_{T, S}^{(2)}$), we get (5) and (8). In an analogous manner, we can also get (6).

Remark. Common important generalized inverse such as the Moore-Penrose inverse A^{+}, the Drazin inverse $A^{(d)}$, the Group inverse $A^{\#}$, the Boot-Duffin inverse $A_{(L)}^{(-1)}$ are all generalized inverse $A_{T, S}^{(2)}$, from (7) or (8), we can get explicit formulas of these important generalized inverse when we take different T and S.

In [1], it has discussed the solution of the equation $A x+y=b, x \in L, y \in L^{\perp}$, similarly we can get next theorem.
Theorem 2. Let $A \in C_{t}^{m \times n}$ and let T be a subspace of C^{n}, let S be a subspace of $C^{m}, \operatorname{dim}(T)=r \leq t, \operatorname{dim}(S)=m-r$ and $A T \oplus S=C^{m}$. Then:

$$
A x+y=b, x \in T, y \in S
$$

has for every b, the unique solution

$$
\begin{align*}
x & =A_{T, S}^{(2)} b \tag{2.4}\\
y & =\left(I-A A_{T, S}^{(2)}\right) b \tag{2.5}
\end{align*}
$$

Proof. Firstly, we will prove $A x+y=b, x \in T, y \in S$ has solution is equivalent to that

$$
\begin{equation*}
\left(A P_{T} E\binom{I}{0}+P_{S} F\right) z=b \tag{2.6}
\end{equation*}
$$

has solution, when $m \leq n$.
(Sufficiency) (2.6) has solution, then take $x=P_{T} E\binom{I}{0} z \in T, y=P_{S} F \in S$.
(Necessity) $\forall z=\left(\begin{array}{c}z_{1} \\ z_{2} \\ \vdots \\ z_{m}\end{array}\right)$,

$$
\begin{aligned}
\left(A P_{T} E\binom{I}{0}+P_{S} F\right) z & =A\left(E_{1}, 0\right)\left(\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{m}
\end{array}\right)+\left(0, F_{2}\right)\left(\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{m}
\end{array}\right) \\
& =z_{1} A \varepsilon_{1}+\cdots+z_{r} A \varepsilon_{r}+z_{r+1} \eta_{r+1}+\cdots+z_{m} \eta_{m} \\
& =A\left(z_{1} \varepsilon_{1}+\cdots+z_{r} \varepsilon_{r}\right)+z_{r+1} \eta_{r+1}+\cdots+z_{m} \eta_{m} \\
& =A x+y=b .
\end{aligned}
$$

Since $\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{r}$ are the basis of $T, \eta_{r+1}, \cdots, \eta_{m}$ are the basis of $S, x \in T, y \in S$, we can solve z. From $A T \oplus S=C^{n}$, we have known $A P_{T} E\binom{I}{0}+P_{S} F$ is nonsingular. So $A x+y=b$ has solution $x=P_{T} E\binom{I}{0}\left(A P_{T} E\binom{I}{0}+P_{S} F\right)^{-1} b=A_{T, S}^{(2)} b$ (Theorem 1). When $n \leq m$, we can get the conclusion similarly.

Remark. Only $b \in A T, A x=b, x \in T$ is consistent and has a solution. It is the case that Lemma 2 has discussed. But when $A T \oplus S=C^{m}, A x+y=b, x \in T, y \in S$ is always consistent and has a unique solution.

Example.

$$
\begin{aligned}
& A x+y=b, x \in R\left(A^{*}\right), y \in N\left(A^{*}\right) . \\
& A=\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
2 & 1 & 0 & 1
\end{array}\right), \quad b=\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right) .
\end{aligned}
$$

From Theorem 2, we know $x=A^{+} b$.
Taking $\varepsilon_{1}=\left(\begin{array}{c}1 \\ 0 \\ -1 \\ 0\end{array}\right), \varepsilon_{2}=\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right), \varepsilon_{3}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right), \eta_{4}=\left(\begin{array}{c}1 \\ 1 \\ 1 \\ -1\end{array}\right)$.
Then $A\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right)=\left(\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & 0 \\ 1 & 0 & 2 \\ 2 & 1 & 3\end{array}\right) \cdot\left(A \varepsilon_{1}, A \varepsilon_{2}, A \varepsilon_{3}, \eta_{4}\right)^{-1}=\frac{1}{4}\left(\begin{array}{cccc}3 & 1 & -3 & 1 \\ 1 & 2 & -2 & 1 \\ -2 & -1 & 3 & 0 \\ 1 & 1 & 1 & -1\end{array}\right)$.
$A^{+}=\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, 0\right)\left(A \varepsilon_{1}, A \varepsilon_{2}, A \varepsilon_{3}, \eta_{4}\right)^{-1}=\frac{1}{4}\left(\begin{array}{cccc}1 & 0 & 0 & 1 \\ 1 & 2 & -2 & 1 \\ -2 & 1 & 1 & 0 \\ -2 & -1 & 3 & 0\end{array}\right)$.
$x=A^{+} b=\left(\begin{array}{c}0 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2}\end{array}\right), \quad y=b-A x=\left(\begin{array}{c}\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2}\end{array}\right)$.
Similar to Theorem 1 and Theorem 2, we can get
Theorem 3. Let $A \in C_{t}^{m \times n}, B \in C^{m \times m}, m \leq n$ and let T be a subspace of C^{n}, let S be a subspace of $C^{m}, \operatorname{dim}(T)=r \leq t, \operatorname{dim}(S)=m-r$ and $A T \oplus B S=C^{m}$, then

$$
A x+B y=b, \quad x \in T, y \in S,
$$

has for every b, the unique solution

$$
\begin{align*}
& x=P_{T} E\binom{I}{0}\left(A P_{T} E\binom{I}{0}+B P_{S} F\right)^{-1} b, \tag{2.7}\\
& y=P_{S} F\left(A P_{T} E\binom{I}{0}+B P_{S} F\right)^{-1} b . \tag{2.8}
\end{align*}
$$

Theorem 4. Let $A \in C_{t}^{n \times n}, B \in C^{n \times n}$ and T, S be a subspace of $C^{n}, \operatorname{dim}(T)=$ $r \leq t, \operatorname{dim}(S)=n-r, A T \oplus B S=C^{n}$ and $T \oplus B S=C^{n}$, then

$$
\begin{equation*}
P_{T} E\left(A P_{T} E+B P_{S} F\right)^{-1}=\left(A P_{T, B S}\right)_{T, B S}^{(2)} . \tag{2.9}
\end{equation*}
$$

Proof. Similar to Theorem 2, since $A T \oplus B S=C^{n}, A P_{T} E\binom{I}{0}+B P_{S} F$ is nonsingular. Let $\left\{\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{r}\right\}$ be the basis of $T,\left\{\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n}\right\}$ be the basis of $C^{n},\left\{\eta_{r+1}, \cdots, \eta_{n}\right\}$ be the basis of S, and $\left\{\eta_{1}, \cdots, \eta_{n}\right\}$ be another basis of C^{n}. $E_{1}=\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{r}\right), E_{2}=\left(\varepsilon_{r+1}, \varepsilon_{2}, \cdots, \varepsilon_{n}\right), E=\left(E_{1}, E_{2}\right) . F_{1}=$ $\left(\eta_{1}, \cdots, \eta_{r}\right), F_{2}=\left(\eta_{r+1}, \cdots, \eta_{n}\right), F=\left(F_{1}, F_{2}\right)$. Let

$$
\begin{aligned}
D & =P_{T} E\left(A P_{T} E+B P_{S} F\right)^{-1} \\
& =\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{r}, 0, \cdots, 0\right)\left(A \varepsilon_{1}, A \varepsilon_{2}, \cdots, A \varepsilon_{r}, B \eta_{r+1}, \cdots, B \eta_{n}\right)^{-1} .
\end{aligned}
$$

So $R(D)=R\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{r}\right)=T$. From Lemma 3,

$$
\begin{aligned}
N(D) & =\left(A \varepsilon_{1}, A \varepsilon_{2}, \cdots, A \varepsilon_{r}, B \eta_{r+1}, \cdots, B \eta_{n}\right) N\left(\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{r}, 0, \cdots, 0\right)\right) \\
& =\left(A \varepsilon_{1}, A \varepsilon_{2}, \cdots, A \varepsilon_{r}, B \eta_{r+1}, \cdots, B \eta_{n}\right) \operatorname{span}\left\{e_{r+1}, \cdots, e_{n}\right\} \\
& =\operatorname{span}\left\{B \eta_{r+1}, \cdots, B \eta_{n}\right\}=B S .
\end{aligned}
$$

$$
\text { Explicit Formulas of the Generalized Inverse } A_{T, S}^{(2)}
$$

$$
\begin{aligned}
& \begin{aligned}
& D A P_{T, B S} D=P_{T} E\left(A P_{T} E+B P_{S} F\right)^{-1} A P_{T, B S} P_{T} E\left(A P_{T} E+B P_{S} F\right)^{-1} \\
&=P_{T} E\left(A P_{T} E+B P_{S} F\right)^{-1} A P_{T} E\left(A P_{T} E+B P_{S} F\right)^{-1} \\
&=P_{T} E\left(A P_{T} E+B P_{S} F\right)^{-1}\left(A P_{T} E+B P_{S} F-B P_{S} F\right)\left(A P_{T} E+B P_{S} F\right)^{-1} \\
& \quad=D-D B P_{S} F\left(A P_{T} E+B P_{S} F\right)^{-1} .
\end{aligned} \\
& \begin{array}{l}
R\left(B P_{S} F\left(A P_{T} E+B P_{S} F\right)^{-1}\right)=R\left(B P_{S} F\right)=\operatorname{span}\left\{B \eta_{r+1}, \cdots, B \eta_{n}\right\}=N(D) . \text { So } \\
D B P_{S} F\left(A P_{T} E+B P_{S} F\right)^{-1}=0, \text { i.e., } D A P_{T, B S} D=D . \text { From the uniqueness of } \\
A_{T, S}^{(2)}, \text { we can get the conclusion. }
\end{array}
\end{aligned}
$$

Acknowledgements. This research was supported by National Natural Science Foundation of China (10371044) and Shanghai Priority Academic Discipline (04JC14031).

References

[1] Ben Israel A and Greville T. N. E., Generalized inverse:Theory and applications, 2nd Edition, Springer Verlag, New York, 2003.
[2] R. Bott and R. J. Duffin, On the algebra of network, Trans. Amer. Math. Soc., 74(1953), 99-109.
[3] GuoLiang Chen, GuoMing Liu and YiFeng Xue, Perturbation analysis of the generalized Bott-Duffin inverse of L-zero matrices, Linear and multilinear algebra, 51(2003), 11-20.
[4] GuoLiang Chen, GuoMing Liu and YiFeng Xue, Perturbation theory for the generalized Bott-Duffin inverse and its applications, Applied Mathematics and Computation, 129(2002), 145-155.
[5] Y. Chen, The generalized Bott-Duffin inverse and its applications, Linear Algebra and its applitions, 134(1990), 71-91
[6] YiFeng Xue and GuoLiang Chen, The expression of the generalized Bott-Duffin inverse and its perturbation theory, Applied Mathematics and Computation, 132(2002), 437-444.
[7] Sheng Zhang, A characterization and determinantal formula for the generalized inverse $A_{T, S}^{(2)}$ and the its applications, Applied Mathematics and Computation, 125(2002), 261-269.
[8] Yonglin Chen and Yongxin Yuan, A oblique projection method for solving restricted linear equations, J. Nanjing Normal University, 1(1996), 1-4.
[9] Roger A. Horn and Charles R. Johnson, Matrix analysis, Cambridge [Cambridge shire], New York Cambridge University Press, 1985.
[10] Bin Deng and GuoLiang Chen, Explicit formulas of the common generalized inverses, Perturbation analysis and the iterative computing methods, to appear.

