KYUNGPOOK Math. J. 46(2006), 565-571

Explicit Formulas of the Generalized Inverse $A_{T,S}^{(2)}$ and Its Applications

BIN DENG Department of Mathematics, East China Normal University, Shanghai, 200062, P. R. China e-mail: dengbinboy@hotmail.com

GUO-LIANG CHEN Department of Mathematics, East China Normal University, Shanghai, 200062, P. R. China e-mail: glchen@math.ecnu.edu.cn

ABSTRACT. In this paper, we present the explicit formula of the generalized inverse $A_{T,S}^{(2)}$, and we apply this result to solve restricted linear equation $Ax + y = b, x \in T, y \in S$ and $Ax + By = b, x \in T, y \in S.$

1. Introduction

In their seminal paper, [2] Bott and Duffin introduced and widely used an important tool called the "constrained inverse" of the matrix. This inverse is called Bott-Duffin inverse $(A_{(T)}^{(-1)} = P_T(AP_T + P_{T^{\perp}})^{-1})$, Ben Israel and Greville in [1] have mentioned many properties and applications. Later, Y. Chen in his paper [5] defined the generalized Bott-Duffin inverse and gave some properties and applications, G. Chen, G. Liu, Y. Xue in papers [3], [4], [6] defined L-zero matrices in order to simplify the expression of the generalized Bott-Duffin inverse $(A_{(T)}^{(+)} = P_T(AP_T + P_{T^{\perp}})^+)$. In [10], we have discussed another constrained inverse $A_{T,S}^{(-1)}$, which is defined by $A_{T,S}^{(-1)} = P_{T,S}(AP_{T,S} + P_{S,T})^{-1}$ of a matrix $A \in C^{n \times n}$, where T and S are subspaces of \widetilde{C}^n such that $T \oplus S = C^n$. Through considering the properties of this constrained inverse, we establish the relation between the common important generalized inverse and the inverse, see Lemma 4 and Lemma 5.

It is well known that many common important generalized inverse such as the Moore-Penrose inverse A^+ , the Drazin inverse $A^{(d)}$, the Group inverse $A^{\#}$, the Boot-Duffin inverse $A^{(-1)}_{(L)}$ and so on, are all generalized inverse $A^{(2)}_{T,S}$, which is a $\{2\}$ -inverse of A having the prescribed range T and null space S. In this paper, we

Received July 20, 2005, and, in revised form, September 5, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 15A03, 15A09. Key words and phrases: generalized inverse $A_{T,S}^{(2)}$, explicit formulas, restricted linear equation.

present the explicit formula of the generalized inverse $A_{T,S}^{(2)}$, i.e., we also establish the relation between the $A_{T,S}^{(2)}$ and the inverse, and we apply this result to solve restricted linear equations

$$(1.1) Ax + y = b, \quad x \in T, \ y \in S$$

and

$$(1.2) Ax + By = b, \quad x \in T, \ y \in S.$$

We adopt in this paper the same notations on generalized inverse of matrices as those in [1]. And throughout the article (if we don't mention specially). Let Ibe the identity (unit) matrix, e_i be the *i*th column of I. $A \in C_t^{m \times n}$ and let T be a subspace of C^n , S be a subspace of C^m , with $\dim(T) = r \leq t$, and $\dim(S) = m - r$. Let $\{\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_r\}$ be the basis of T, and $\{\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n\}$ be the basis of C^n . Let $\{\eta_{r+1}, \cdots, \eta_m\}$ be the basis of S, and $\{\eta_1, \cdots, \eta_m\}$ be the basis of C^m . Let

$$E_1 = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_r), \quad E_2 = (\varepsilon_{r+1}, \varepsilon_{r+2}, \cdots, \varepsilon_n), \quad E = (E_1, E_2).$$

$$F_1 = (\eta_1, \eta_2, \cdots, \eta_r), \quad F_2 = (\eta_{r+1}, \eta_{r+2}, \cdots, \eta_m), \quad F = (F_1, F_2).$$

For any $A \in C^{m \times n}$, we denote by

$$R(A) = \{ y \in C^m : y = Ax \text{ for some } x \in C^n \} : \text{ the Range of } A.$$

$$N(A) = \{ x \in C^n : Ax = 0 \} : \text{ the Null space of } A.$$

Lemma 1 ([1]). Let $A \in C_t^{m \times n}$ and let T be a subspace of C^n , let S be a subspace of C^m , dim $(T) = r \leq t$, dim(S) = m - r. Then A has a $\{2\}$ -inverse X such that R(X) = T, N(X) = S if and only if one of the following conditions is satisfied:

- (1) $AT \oplus S = C^m$;
- (2) $A^*S^{\perp} \oplus T^{\perp} = C^n;$
- (3) $P_{S^{\perp}}AT = S^{\perp};$
- (4) $P_T A^* S^\perp = T.$

in which case X is unique.

Lemma 2 ([7], [8]). Let $A \in C_r^{m \times n}$, T be a subspace of C^n , $b \in AT$, $T \cap N(A) = 0$. Then the unique solution of Ax = b, $(x \in T)$ is given by $x = A_{T,S}^{(2)}b$ for any subspace of S of C^m satisfying $AT \oplus S = C^m$.

Lemma 3 ([9]). Let $A \in C^{m \times n}$, $B \in C_m^{m \times m}$, and $C \in C_n^{n \times n}$. Then:

- (1.3) $R(AC) = R(A) = B^{-1}R(BA)$
- (1.4) N(BA) = N(A) = CN(AC)

Explicit Formulas of the Generalized Inverse $A_{T,S}^{(2)}$

Lemma 4 ([10]). If $A \in C^{m \times n}$, then

(1)
$$A^+ = A^* (AA^* + P_{N(A^*)})^{-1}$$

(2) $A^+ = (A^*A + P_{N(A)})^{-1}A^*.$

Lemma 5 ([10]).

(1) If $A \in C^{n \times n}$ and ind(A)=1, then

$$A^{\#} = P_{R(A),N(A)} (A + P_{N(A),R(A)})^{-1}$$

(2) If $A \in C^{n \times n}$ and $\operatorname{ind}(A) = k > 1$, then $\forall l \ge k$ $A^{(d)} = P_{R(A^l), N(A^l)} (AP_{R(A^l), N(A^l)} + P_{N(A^l), R(A^l)})^{-1}.$

2. Main results

Theorem 1. Let $A \in C_t^{m \times n}$ and let T be a subspace of C^n , let S be a subspace of C^m , dim $(T) = r \le t$, dim(S) = m - r and $AT \oplus S = C^m$. Then:

(2.1)
$$A_{T,S}^{(2)} = P_T E \begin{pmatrix} I \\ 0 \end{pmatrix} (A P_T E \begin{pmatrix} I \\ 0 \end{pmatrix} + P_S F)^{-1}, \begin{pmatrix} I \\ 0 \end{pmatrix} \in C^{n \times m}, \text{ if } m \le n$$

(2.2) $A_{T,S}^{(2)} = P_T E \begin{pmatrix} I & 0 \end{pmatrix} (A P_T E \begin{pmatrix} I & 0 \end{pmatrix} + P_S F)^{-1}, \begin{pmatrix} I & 0 \end{pmatrix} \in C^{n \times m}, \text{ if } n \le m$

(2.3)
$$A_{T,S}^{(2)} = (E_1, 0)(AE_1, F_2)^{-1}$$

= $(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_r, 0, \cdots, 0)(A\varepsilon_1, A\varepsilon_2, \cdots, A\varepsilon_r, \eta_{r+1}, \cdots, \eta_m)^{-1}, (E_1, 0) \in C^{n \times m}$

Proof. From $P_T E = P_T(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n) = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_r, 0, \cdots, 0)$, it follows that $P_T = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_r, 0, \cdots, 0)(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n)^{-1} = (E_1, 0)E^{-1}$ and $P_S = (0, \cdots, 0, \eta_{r+1}, \cdots, \eta_m)(\eta_1, \cdots, \eta_m)^{-1} = (0, F_2)F^{-1}$. So $AP_T E \begin{pmatrix} I \\ 0 \end{pmatrix} + P_S F = (A\varepsilon_1, A\varepsilon_2, \cdots, A\varepsilon_r, \eta_{r+1}, \cdots, \eta_m)$. From $AT \oplus S = C^n$ and $Aspan\{\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_r\} = AT$, we can easily get $(A\varepsilon_1, A\varepsilon_2, \cdots, A\varepsilon_r, \eta_{r+1}, \cdots, \eta_m)$ is nonsingular. Let

$$D = P_T E \begin{pmatrix} I \\ 0 \end{pmatrix} (A P_T E \begin{pmatrix} I \\ 0 \end{pmatrix} + P_S F)^{-1}$$

Thus

$$D = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_r, 0, \cdots, 0) \begin{pmatrix} I \\ 0 \end{pmatrix} (A(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_r, 0, \cdots, 0) \begin{pmatrix} I \\ 0 \end{pmatrix} + (0, \cdots, 0, \eta_{r+1}, \cdots, \eta_m))^{-1} = (E_1, 0) (AE_1, F_2)^{-1}, \ (E_1, 0) \in C^{n \times m}.$$

For (AE_1, F_2) is nonsingular, we can get $R(D) = R(E_1, 0) = T$. From Lemma 3, $N(D) = (AE_1, F_2)N(E_1, 0).$

Let
$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in N(E_1, 0)$$
, then $(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_r, 0, \cdots, 0) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = 0 = x_1 \varepsilon_1 + \cdots + \varepsilon_n$

 $x_r \varepsilon_r$. Since $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_r$ are linear independence, we can get $x_1 = x_2 = \cdots = x_r =$ 0. So we can take e_{r+1}, \dots, e_n as the basis of $N(E_1, 0)$. Then

 $N(D) = (AE_1, F_2)N(E_1, 0) = (AE_1, F_2)span\{e_{r+1}, \cdots, e_n\} = span\{\eta_{r+1}, \cdots, \eta_m\} = S.$

$$DAD = (E_1, 0)(AE_1, F_2)^{-1}A(E_1, 0)(AE_1, F_2)^{-1}$$

= $(E_1, 0)(AE_1, F_2)^{-1}((AE_1, F_2) - (0, F_2))(AE_1, F_2)^{-1}$
= $(E_1, 0)(AE_1, F_2)^{-1} - (E_1, 0)(AE_1, F_2)^{-1}(0, F_2)(AE_1, F_2)^{-1}$
= $D - D(0, F_2)(AE_1, F_2)^{-1}$.

From N(D) = S, it follows that $D(0, F_2)(AE_1, F_2)^{-1} = 0$, so DAD = D, N(D) = Sand R(D) = T. From Lemma 1(the uniqueness of $A_{T,S}^{(2)}$), we get (5) and (8). In an analogous manner, we can also get (6). \Box

Remark. Common important generalized inverse such as the Moore-Penrose inverse A^+ , the Drazin inverse $A^{(d)}$, the Group inverse $A^{\#}$, the Boot-Duffin inverse $A_{(L)}^{(-1)}$ are all generalized inverse $A_{T,S}^{(2)}$, from (7) or (8), we can get explicit formulas of these important generalized inverse when we take different T and S.

In [1], it has discussed the solution of the equation Ax + y = b, $x \in L$, $y \in L^{\perp}$, similarly we can get next theorem.

Theorem 2. Let $A \in C_t^{m \times n}$ and let T be a subspace of C^n , let S be a subspace of C^m , dim $(T) = r \leq t$, dim(S) = m - r and $AT \oplus S = C^m$. Then:

$$Ax + y = b, x \in T, y \in S,$$

has for every b, the unique solution

(2.4)
$$x = A_{TS}^{(2)}b,$$

(2.4)
$$x = A_{T,S}^{(2)}b,$$

(2.5) $y = (I - AA_{T,S}^{(2)})b.$

Proof. Firstly, we will prove Ax + y = b, $x \in T$, $y \in S$ has solution is equivalent to that

(2.6)
$$(AP_T E \begin{pmatrix} I \\ 0 \end{pmatrix} + P_S F) z = b$$

568

Explicit Formulas of the Generalized Inverse $A_{T,S}^{(2)}$

has solution, when $m \leq n$. (Sufficiency) (2.6) has solution, then take $x = P_T E \begin{pmatrix} I \\ 0 \end{pmatrix} z \in T, \ y = P_S F \in S$.

$$(\text{Necessity}) \ \forall z = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_m \end{pmatrix},$$
$$(AP_T E \begin{pmatrix} I \\ 0 \end{pmatrix} + P_S F) z = A(E_1, 0) \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_m \end{pmatrix} + (0, F_2) \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_m \end{pmatrix}$$
$$= z_1 A \varepsilon_1 + \dots + z_r A \varepsilon_r + z_{r+1} \eta_{r+1} + \dots + z_m \eta_m$$
$$= A(z_1 \varepsilon_1 + \dots + z_r \varepsilon_r) + z_{r+1} \eta_{r+1} + \dots + z_m \eta_m$$
$$= Ax + y = b.$$

Since $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_r$ are the basis of T, $\eta_{r+1}, \cdots, \eta_m$ are the basis of $S, x \in T, y \in S$, we can solve z. From $AT \oplus S = C^n$, we have known $AP_T E \begin{pmatrix} I \\ 0 \end{pmatrix} + P_S F$ is nonsingular. So Ax + y = b has solution $x = P_T E \begin{pmatrix} I \\ 0 \end{pmatrix} (AP_T E \begin{pmatrix} I \\ 0 \end{pmatrix} + P_S F)^{-1} b = A_{T,S}^{(2)} b$ (Theorem 1). When $n \leq m$, we can get the conclusion similarly. \Box

Remark. Only $b \in AT$, Ax = b, $x \in T$ is consistent and has a solution. It is the case that Lemma 2 has discussed. But when $AT \oplus S = C^m$, Ax + y = b, $x \in T$, $y \in S$ is always consistent and has a unique solution.

Example.

$$Ax + y = b, \ x \in R(A^*), \ y \in N(A^*).$$
$$A = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 2 & 1 & 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}.$$

From Theorem 2, we know $x = A^+ b$.

Taking
$$\varepsilon_1 = \begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix}$$
, $\varepsilon_2 = \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}$, $\varepsilon_3 = \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}$, $\eta_4 = \begin{pmatrix} 1\\1\\1\\-1 \end{pmatrix}$.
Then $A(\varepsilon_1, \varepsilon_2, \varepsilon_3) = \begin{pmatrix} 2 & -1 & 1\\-1 & 2 & 0\\1 & 0 & 2\\2 & 1 & 3 \end{pmatrix}$. $(A\varepsilon_1, A\varepsilon_2, A\varepsilon_3, \eta_4)^{-1} = \frac{1}{4} \begin{pmatrix} 3 & 1 & -3 & 1\\1 & 2 & -2 & 1\\-2 & -1 & 3 & 0\\1 & 1 & 1 & -1 \end{pmatrix}$.

569

$$A^{+} = (\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, 0)(A\varepsilon_{1}, A\varepsilon_{2}, A\varepsilon_{3}, \eta_{4})^{-1} = \frac{1}{4} \begin{pmatrix} 1 & 0 & 0 & 1\\ 1 & 2 & -2 & 1\\ -2 & 1 & 1 & 0\\ -2 & -1 & 3 & 0 \end{pmatrix}.$$
$$x = A^{+}b = \begin{pmatrix} 0\\ 0\\ \frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2} \end{pmatrix}, \quad y = b - Ax = \begin{pmatrix} \frac{1}{2}\\ \frac{1}{2}\\ -\frac{1}{2}\\ -\frac{1}{2} \end{pmatrix}.$$

Similar to Theorem 1 and Theorem 2, we can get

Theorem 3. Let $A \in C_t^{m \times n}$, $B \in C^{m \times m}$, $m \le n$ and let T be a subspace of C^n , let S be a subspace of C^m , dim $(T) = r \le t$, dim(S) = m - r and $AT \oplus BS = C^m$, then

$$Ax + By = b, \quad x \in T, \ y \in S,$$

has for every b, the unique solution

(2.7)
$$x = P_T E \begin{pmatrix} I \\ 0 \end{pmatrix} (A P_T E \begin{pmatrix} I \\ 0 \end{pmatrix} + B P_S F)^{-1} b,$$

(2.8)
$$y = P_S F (AP_T E \begin{pmatrix} I \\ 0 \end{pmatrix} + BP_S F)^{-1} b.$$

Theorem 4. Let $A \in C_t^{n \times n}$, $B \in C^{n \times n}$ and T, S be a subspace of C^n , $\dim(T) = r \leq t$, $\dim(S) = n - r$, $AT \oplus BS = C^n$ and $T \oplus BS = C^n$, then

(2.9)
$$P_T E (AP_T E + BP_S F)^{-1} = (AP_{T,BS})_{T,BS}^{(2)}.$$

Proof. Similar to Theorem 2, since $AT \oplus BS = C^n$, $AP_TE\begin{pmatrix}I\\0\end{pmatrix} + BP_SF$ is nonsingular. Let $\{\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_r\}$ be the basis of T, $\{\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n\}$ be the basis of C^n , $\{\eta_{r+1}, \cdots, \eta_n\}$ be the basis of S, and $\{\eta_1, \cdots, \eta_n\}$ be another basis of C^n . $E_1 = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_r), E_2 = (\varepsilon_{r+1}, \varepsilon_2, \cdots, \varepsilon_n), E = (E_1, E_2). F_1 =$ $(\eta_1, \cdots, \eta_r), F_2 = (\eta_{r+1}, \cdots, \eta_n), F = (F_1, F_2).$ Let

$$D = P_T E (AP_T E + BP_S F)^{-1}$$

= $(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_r, 0, \cdots, 0) (A\varepsilon_1, A\varepsilon_2, \cdots, A\varepsilon_r, B\eta_{r+1}, \cdots, B\eta_n)^{-1}$

So $R(D) = R(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_r) = T$. From Lemma 3,

$$N(D) = (A\varepsilon_1, A\varepsilon_2, \cdots, A\varepsilon_r, B\eta_{r+1}, \cdots, B\eta_n)N((\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_r, 0, \cdots, 0))$$

= $(A\varepsilon_1, A\varepsilon_2, \cdots, A\varepsilon_r, B\eta_{r+1}, \cdots, B\eta_n)span\{e_{r+1}, \cdots, e_n\}$
= $span\{B\eta_{r+1}, \cdots, B\eta_n\} = BS.$

570

Explicit Formulas of the Generalized Inverse $A_{T,S}^{(2)}$

$$DAP_{T,BS}D = P_T E (AP_T E + BP_S F)^{-1} AP_{T,BS} P_T E (AP_T E + BP_S F)^{-1}$$

= $P_T E (AP_T E + BP_S F)^{-1} AP_T E (AP_T E + BP_S F)^{-1}$
= $P_T E (AP_T E + BP_S F)^{-1} (AP_T E + BP_S F - BP_S F) (AP_T E + BP_S F)^{-1}$
= $D - DBP_S F (AP_T E + BP_S F)^{-1}$.

 $R(BP_SF(AP_TE + BP_SF)^{-1}) = R(BP_SF) = span\{B\eta_{r+1}, \cdots, B\eta_n\} = N(D).$ So $DBP_SF(AP_TE + BP_SF)^{-1} = 0$, i.e., $DAP_{T,BS}D = D$. From the uniqueness of $A_{T,S}^{(2)}$, we can get the conclusion.

Acknowledgements. This research was supported by National Natural Science Foundation of China (10371044) and Shanghai Priority Academic Discipline (04JC14031).

References

- Ben Israel A and Greville T. N. E., Generalized inverse: Theory and applications, 2nd Edition, Springer Verlag, New York, 2003.
- [2] R. Bott and R. J. Duffin, On the algebra of network, Trans. Amer. Math. Soc., 74(1953), 99-109.
- [3] GuoLiang Chen, GuoMing Liu and YiFeng Xue, Perturbation analysis of the generalized Bott-Duffin inverse of L-zero matrices, Linear and multilinear algebra, 51(2003), 11-20.
- [4] GuoLiang Chen, GuoMing Liu and YiFeng Xue, Perturbation theory for the generalized Bott-Duffin inverse and its applications, Applied Mathematics and Computation, 129(2002), 145-155.
- [5] Y. Chen, The generalized Bott-Duffin inverse and its applications, Linear Algebra and its applitions, 134(1990), 71-91
- [6] YiFeng Xue and GuoLiang Chen, The expression of the generalized Bott-Duffin inverse and its perturbation theory, Applied Mathematics and Computation, 132(2002), 437-444.
- [7] Sheng Zhang, A characterization and determinantal formula for the generalized inverse $A_{T,S}^{(2)}$ and the its applications, Applied Mathematics and Computation, **125**(2002), 261-269.
- [8] Yonglin Chen and Yongxin Yuan, A oblique projection method for solving restricted linear equations, J. Nanjing Normal University, 1(1996), 1-4.
- [9] Roger A. Horn and Charles R. Johnson, Matrix analysis, Cambridge [Cambridge shire], New York Cambridge University Press, 1985.
- [10] Bin Deng and GuoLiang Chen, *Explicit formulas of the common generalized inverses*, Perturbation analysis and the iterative computing methods, to appear.