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The First Four Terms of Kauffman’s Link Polynomial

Taizo Kanenobu
Department of Mathematics, Osaka City University, Sugimoto, Sumiyoshi-ku, Os-
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Abstract. We give formulas for the first four coefficient polynomials of the Kauffman’s

link polynomial involving linking numbers and the coefficient polynomials of the Kauff-

man polynomials of the one- and two-component sublinks. We use mainly the Dubrovnik

polynomial, a version of the Kauffman polynomial.

1. Introduction

The Kauffman polynomial [6], [7] of an r-component link L may be written as
F (L; a, z) =

∑
i≥1 Fi−r(L; a)zi−r, where each coefficient Fi−r(L; a) is a Laurent

polynomial in a, Z[a±1]. We give formulas for the first four coefficient polynomials
Fi−r(L; a), 1 ≤ i ≤ 4, r ≥ 2, which involve linking numbers and the first i coefficient
polynomials of the Kauffman polynomials of the one- and two-component sublinks
of L. Although, we will rather use the Dubrovnik polynomial, a version of the
Kauffman polynomial, we will also give formulas for the original Kauffman polyno-
mial. In practice, we calculate the difference between the coefficient polynomial of
the link L and that of the split union of each component of L.

In a joint work with Miyazawa [5], the author has given similar formulas for the
HOMFLY polynomial, the second and third coefficient polynomials P3−r(L; t) and
P5−r(L; t) involving linking numbers and the first three coefficient polynomials of
the HOMFLY polynomials of the one-, two-, and three-component sublinks of L.
They generalize the formula for the first coefficient polynomial P1−r(L; t) by Licko-
rish and Millett. Also, the first coefficient polynomial of the HOMFLY polynomial
agrees with that of the Kauffman polynomial. See Remark 4.2. In this paper, we
generalize this to obtain the formulas for the first four coefficient polynomials of the
Kauffman polynomial.

In Section 2, we give definitions of the Kauffman and Dubrovnik polynomials.
We also give some of their properties. In Section 3, we give some lemmas that we
need to prove the theorems. In Section 4, we prove the formulas for the first and

Received February 28, 2005, and, in revised form, July 7, 2005.
2000 Mathematics Subject Classification: 57M25.
Key words and phrases: knot, link, Kauffman polynomial, Dubrovnik polynomial, coef-

ficient polynomial.
The author was partially supported by Grant-in-Aid for Scientific Research (B)

(No. 14340027), Japan Society for the Promotion of Science.

509



510 Taizo Kanenobu

second coefficient polynomials. In Sections 5 and 6, we prove the formulas for the
third and fourth coefficient polynomials, respectively. In Appendix A, we give some
errata in [3], since we use some formulas in it.

2. The Kauffman and Dubrovnik polynomials

We give the definitions of the Kauffman polynomial F (L; a, z) ∈ Z[a±1, z±1]
[6], [7] and the Dubrovnik polynomial Y (L;α, ω) ∈ Z[α±1, ω±1], a version of the
Kauffman polynomial, which are isotopy invariants of an oriented link L. There
are regular isotopy invariants Λ(D) ∈ Z[a±1, z±1] and Λ∗(D) ∈ Z[α±1, ω±1] for an
unoriented link diagram D with properties:

Λ(O) = 1,(2.1)
Λ(D+) + Λ(D−) = z (Λ(D0) + Λ(D∞)) ,(2.2)

Λ (C+) = aΛ (C) , Λ (C−) = a−1Λ (C) ;(2.3)
Λ∗(O) = 1,(2.4)

Λ∗(D+)− Λ∗(D−) = ω (Λ∗(D0)− Λ∗(D∞)) ,(2.5)
Λ∗ (C+) = αΛ∗ (C) , Λ∗ (C−) = α−1Λ∗ (C) ,(2.6)

where O is the diagram of the trivial knot with no crossing, {D+, D−, D0, D∞} and
{C+, C−, C} are unoriented link diagrams that are identical except near one point
where they are as in Fig. 1 and Fig. 2, respectively.

DD
−+ 0

D D
∞

Figure 1:

CC
−+

C

Figure 2:
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The Kauffman and Dubrovnik polynomials are defined by

F (L; a, z) = a−w(D)Λ(D);(2.7)
Y (L;α, ω) = α−w(D)Λ∗(D),(2.8)

where D is a diagram of L and w(D) is its writhe. They are related by the following
formula due to Lickorish; see [8, p. 89], [10, p. 177]:

(2.9) Y (L; α, ω) = (−1)r+1F (L;
√−1α,−√−1ω),

where r is the number of the components of L. Cf. [3, Eq. (2.2)] and Appendix A.
The Kauffman and Dubrovnik polynomials of an r-component link L are of the

form

F (L; a, z) =
∑

i≥1

Fi−r(L; a)zi−r,(2.10)

Y (L; α, ω) =
∑

i≥1

Yi−r(L; α)ωi−r,(2.11)

where Fi−r(L; a) ∈ Z[a±1], Yi−r(L; α) ∈ Z[α±1] and the powers of a and α which
appear in them are all even or odd, depending on whether i−r is even or odd; see [3,
Proposition 2.1], [14, Proposition 3(ii)]. The proof of these formulas are analogous
to that of [11, Proposition 22].

We call Fi−r(L; a) and Yi−r(L;α) the coefficient polynomials of the Kauffman
polynomial F (L; a, z) and the Dubrovnik polynomial Y (L; α, ω), respectively.

Substituting (2.10) and (2.11) for (2.9), we obtain

(2.12) Yi−r(L; α) = (−1)i+1
√−1

i−r
Fi−r(L;

√−1α)

for i ≥ 1.
For an r-component link L = K1∪K2∪· · ·∪Kr, we denote by L̇ the split union

of the r knots K1, K2, · · · ,Kr; L̇ = K1 tK2 t · · · tKr. Then

F (L̇; a, z) =
(
(a + a−1)z−1 − 1

)r−1
r∏

j=1

F (Kj ; a, z);(2.13)

Y (L̇; α, ω) =
(
(α− α−1)ω−1 + 1

)r−1
r∏

j=1

Y (Kj ; α, ω);(2.14)

cf. [10, Proposition 16.2(iv)]. We put

Φn(L; a) = (−a2)λFn(L; a)− Fn(L̇; a);(2.15)
Υn(L; α) = α2λYn(L; α)− Yn(L̇; α),(2.16)

where λ is the total linking number of L.
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In the following, we will mainly consider the Dubrovnik polynomial. However,
we will also give equivalent formulas in terms of the Kauffman polynomial.

For an r-component link L, from the observation of Lickorish [14, Proposition
3(i)], we have F (L;

√−1, z) = (−1)r−1 and Y (L; 1, ω) = 1. Moreover, we have the
following; cf. [3, Proposition 2.2].

Proposition 2.1. Let L be an r-component link.

(i) If 1 ≤ i < r, then the coefficient polynomial Fi−r(L) (resp. Yi−r(L)) is divis-
ible by (a + a−1)r−i (resp. (α− α−1)r−i).

(ii) F0(L;
√−1) = (−1)r−1, Y0(L; 1) = 1.

(iii) If r < i, then the coefficient polynomial Fi−r(L) (resp. Yi−r(L)) is divisible
by a + a−1 (resp. α− α−1).

Also, we have:

Proposition 2.2. Suppose that L is an r-component link and 1 ≤ i ≤ r− 1. Then
it holds that

[(
a + a−1

)i−r
Fi−r(L; a)

]
a=
√−1

= (−1)i+1

(
r − 1
r − i

)
;(2.17)

[(
α− α−1

)i−r
Yi−r(L;α)

]
α=1

=
(

r − 1
r − i

)
.(2.18)

Proof. Let m = r − i. Then by [3, Corollary 2.1(i)] (see Remark 2.3 below) and [3,
Lemma 2.1], we have:

[
Fm(L; a)

(a + a−1)m

]

a=
√−1

=
F

(m)
m (L;

√−1)
[(dm/dam) (a + a−1)m]a=

√−1

(2.19)

=
(−1)m+r−1m!2m

(
r−1
m

)

m!2m
,

which gives (2.17). By using (2.12), (2.17) implies (2.18). ¤

Remark 2.3. The equations in [3, Corollary 2.1(i)] and in [3, Page 417, Line −2]
contain errata. The correct forms are given in [4, Appendix].

3. Lemmas

In this section, we prepare some lemmas that we need to prove the theorems in
Sects 4-6.

Lemma 3.1. Let L be the split union of an (r − 1)-component link L′ and a knot
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K; L = L′ tK. Then it holds the following.

(3.1) Υm−r(L) =





(α− α−1)
∑m−1

i=0 Υ(m−i)−(r−1)(L′)Yi(K)
+

∑m−2
j=0 Υ(m−j−1)−(r−1)(L′)Yj(K) if m ≥ 2;

(α− α−1)Υ2−r(L′)Y0(K) if m = 1.

Proof. Since

Y (L) =
(
(α− α−1)ω−1 + 1

)
Y (L′)Y (K)(3.2)

=
(
(α− α−1)ω−1 + 1

)

∑

i≥0

Yi−r+2(L′)ωi−r+2





∑

j≥0

Yj(K)ωj


 ,

we have

Ym−r(L)(3.3)

= (α− α−1)
m−1∑

i=0

Y(m−i)−(r−1)(L′)Yi(K) +
m−2∑

j=0

Y(m−j−1)−(r−1)(L′)Yj(K).

Similarly, we have

Ym−r(L̇)(3.4)

= (α− α−1)
m−1∑

i=0

Y(m−i)−(r−1)(L̇′)Yi(K) +
m−2∑

j=0

Y(m−j−1)−(r−1)(L̇′)Yj(K).

Let λ be the total linking number of L, which is equal to that of L′. Then we have

Υm−r(L)(3.5)
= a2λYm−r(L)− Ym−r(L̇)

= (α− α−1)
m−1∑

i=0

Υ(m−i)−(r−1)(L′)Yi(K) +
m−2∑

j=0

Υ(m−j−1)−(r−1)(L′)Yj(K),

completing the proof. ¤

Let L+, L−, L0, L∞ be four oriented links that are identical except near one
point where they are as in Fig. 3, where the dotted curves show how the arcs are
connected, meaning that the crossings of L+ and L− shown in Fig. 3 are between
different components. We call (L+, L−, L0, L∞) a mixed skein quadruple.

Suppose further that L+ and L− are r-component links, r ≥ 2, that differ at
a crossing c between the (r − 1)th and rth components. Then L0 and L∞ are



514 Taizo Kanenobu

LL −+ 0L L ∞

Figure 3:

(r − 1)-component links. We denote:

L+ = K1
+ ∪K2

+ ∪ · · · ∪Kr−1
+ ∪Kr

+,

L− = K1
− ∪K2

− ∪ · · · ∪Kr−1
− ∪Kr

−,

L0 = K1
0 ∪K2

0 ∪ · · · ∪Kr−1
0 ,

L∞ = K1
∞ ∪K2

∞ ∪ · · · ∪Kr−1
∞ ,

(3.6)

where Kr
+ and Kr−1

− cross under Kr−1
+ and Kr

− at the crossing c, respectively. For
each component,

• Ki
+ = Ki

− = Ki
0 = Ki

∞ for 1 ≤ i ≤ r − 2, which we simply denote by Ki;

• Ki
+ = Ki

− for 1 ≤ i ≤ r.

We denote by Lij
δ the two-component sublink Ki

δ ∪Kj
δ of Lδ, δ = +,−, 0,∞. Then

• (Lr−1,r
+ , Lr−1,r

− ,Kr−1
0 ,Kr−1

∞ ) is a mixed skein quadruple;

• Lij
+ = Lij

− = Lij
0 = Lij

∞ if 1 ≤ i < j ≤ r − 2;

• Li,r−1
+ = Li,r−1

− and Lir
+ = Lir

− if 1 ≤ i ≤ r − 2.

We denote by λij
δ the linking number of Ki

δ and Kj
δ , δ = +,−, 0,∞; λij

δ =
lk(Ki

δ,K
j
δ ), and by λδ the total linking number of Lδ, δ = +,−, 0,∞; λδ =

∑
i<j λij

δ .
Then we have:

λ+ = λ0 + λr−1,r
+ ,(3.7)

λ− = λ0 + λr−1,r
− = λ+ − 1,(3.8)

λ∞ = λ0 − 2
r−2∑

i=1

λir
+ .(3.9)

Let µ be the linking number of Kr
+ with the remainder of L+;

(3.10) µ = lk(Kr
+, L+ −Kr

+) =
r−1∑

i=1

λir
+ .
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Then we have:

(3.11) αY (L+)− α−1Y (L−) = ω
(
Y (L0)− α−4µ+2Y (L∞)

)
;

cf. [9, Sect. 3].
Putting

(3.12) ν = 2λ+ − 1 = 2λ− + 1,

we have:

Lemma 3.2.

(3.13) Υn(L+)− Υn(L−) = αν
(
Yn−1(L0)− α−4µ+2Yn−1(L∞)

)
.

Proof. Since L̇+ and L̇− are isotopic, we have

Υn(L+)− Υn(L−) = α2λ+Yn(L+)− α2λ−Yn(L−)(3.14)
= αν

(
αYn(L+)− α−1Yn(L−)

)
,

which implies (3.13) by (3.11). ¤

For an r-component link L = K1 ∪K2 ∪ · · · ∪Kr, put

fn(L) =
∑

i<j


Υn(Lij)

∏

k 6=i,j

Y0(Kk)


 ;(3.15)

g(L) =
∑

i<j, k 6=i,j


Υ1(Lij)Y1(Kk)

∏

l 6=i,j,k

Y0(Kl)


 ,(3.16)

where Lij = Ki ∪Kj . Then we have:

Lemma 3.3. Let µ′ = lk(Kr−1
+ ,Kr

+). Then

fn(L+)− fn(L−)(3.17)

= α2µ′−1
(
Yn−1(Kr−1

0 )− α−4µ′+2Yn−1(Kr−1
∞ )

) r−2∏

k=1

Y0(Kk);

g(L+)− g(L−)(3.18)

= α2µ′−1
(
Y0(Kr−1

0 )− α−4µ′+2Y0(Kr−1
∞ )

) r−2∑

k=1


Y1(Kk)

∏

l 6=k,r−1,r

Y0(Kl)


 .
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Proof. If (i, j) 6= (r − 1, r), then Lij
+ = Lij

−, and so we denote it by Lij . Then for
δ = +, −,

(3.19) fn(Lδ) =
∑

i<j
(i,j)6=(r−1,r)


Υn(Lij)

∏

k 6=i,j

Y0(Kk)


 + Υn(Lr−1,r

δ )
r−2∏

k=1

Y0(Kk),

and so

(3.20) fn(L+)− fn(L−) =
(
Υn(Lr−1,r

+ )− Υn(Lr−1,r
− )

) r−2∏

k=1

Y0(Kk),

which implies (3.17) by Lemma 3.2.
Next, for δ = +, −,

g(Lδ) =
∑

i<j, k 6=i,j
(i,j)6=(r−1,r)


Υ1(Lij)Y1(Kk)

∏

l 6=i,j,k

Y0(Kl)


(3.21)

+ Υ1(L
r−1,r
δ )

r−2∑

k=1


Y1(Kk)

∏

l 6=k,r−1,r

Y0(Kl)


 ,

and so

g(L+)− g(L−)(3.22)

=
(
Υ1(L

r−1,r
+ )− Υ1(L

r−1,r
− )

) r−2∑

k=1


Y1(Kk)

∏

l 6=k,r−1,r

Y0(Kl)


 ,

which implies (3.18) by Lemma 3.2. ¤

4. The first and second terms

In this section, we prove the following theorem giving formulas for the first and
second coefficient polynomials.

Theorem 4.1. For an r-component link L, r ≥ 2, it holds that

Υ1−r(L) = 0;(4.1)
Υ2−r(L) = 0.(4.2)

Proof. Let (L+, L−, L0, L∞) be a mixed skein quadruple with L+ an r-component
link. Suppose that n = 1− r or 2− r. Then by Lemma 3.2,

(4.3) Υn(L+) = Υn(L−),
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since Yn−1(L0) = Yn−1(L∞) = 0 by (2.11). Therefore, putting L = K1 ∪ K2 ∪
· · · ∪ Kr, we have Υn(L) = Υn(L′ t Kr) with L′ = L − Kr, and thus we obtain
Υn(L) = Υn(L̇) = 0 by (2.16), completing the proof. ¤

By using (2.14) and (2.11), (4.1) and (4.2) imply the following equivalent for-
mulas:

Y1−r(L) = α−2λ(α− α−1)r−1
r∏

i=1

Y0(Ki);(4.4)

Y2−r(L) = α−2λ(α− α−1)r−1
r∑

i=1


Y1(Ki)

∏

j 6=i

Y0(Kj)


(4.5)

+ (r − 1)α−2λ(α− α−1)r−2
r∏

i=1

Y0(Ki).

Equations (4.4) and (4.5) immediately imply (2.18) with i = 1, 2.

Remark 4.2. Since the first terms of the HOMFLY and Kauffman polynomials
agree (see (4.10) below), we obtain (4.4) from a formula (4.9) below by Lickorish
and Millett as follows:

The HOMFLY polynomial P (L; t, z) ∈ Z[t±1, z±1] [1], [13] is an invariant of
the isotopy type of an oriented link L, which is defined, as in [2], by the following
formulas:

P (U ; t, z) = 1,(4.6)
t−1P (L+; t, z)− tP (L−; t, z) = zP (L0; t, z).(4.7)

where U is the unknot and L+, L−, L0 are three links that are identical except
near one point where they are as in Fig. 4. By [11, Proposition 22], the HOMFLY
polynomial of an r-component link L is of the form

(4.8) P (L; t, z) =
∑

i≥0

P2i−r+1(L; t)z2i−r+1,

where each polynomial P2i−r+1(L; t) ∈ Z[t±1] is called the coefficient polynomial of
the HOMFLY polynomial P (L; t, z); the powers of t which appear in it are all even
or odd, depending on whether 2i− r + 1 is even or odd. Also, for an r-component
link L = K1 ∪K2 ∪ · · · ∪Kr with total linking number λ, we have:

(4.9) P1−r(L; t) = t2λ(t−1 − t)r−1
r∏

i=1

P0(Ki; t);

cf. [5, (2.2)]. Furthermore, it holds that:

(4.10) P1−r(L; t) = Y1−r(L; t−1) =
√−1

1−r
F1−r(L;

√−1t−1).
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In particular, for a knot K,

(4.11) P0(K; t) = Y0(K; t−1) = F0(K;
√−1t−1);

see [10, Proposition 16.9]. By using (4.10) and (4.11), we obtain (4.4) from (4.9).

LL −+ 0L

Figure 4:

Remark 4.3. Equation (4.4) and the first equalities of (4.10) and (4.11) are given
in (2.4) in [3]. However, it contains errata. See Appendix for the correct form.

Theorem 4.1 is equivalent to the following:

Theorem 4.1(F). For an r-component link L, r ≥ 2, it holds that

Φ1−r(L) = 0;(4.12)
Φ2−r(L) = 0.(4.13)

Equivalently,

F1−r(L) = (−a−2)λ(a + a−1)r−1
r∏

i=1

F0(Ki);(4.14)

F2−r(L) = (−a−2)λ(a + a−1)r−1
r∑

i=1


F1(Ki)

∏

j 6=i

F0(Kj)


(4.15)

− (r − 1)(−a−2)λ(a + a−1)r−2
r∏

i=1

F0(Ki).

5. The third term

In this section, we prove the following theorem giving a formula for the third
coefficient polynomial.

Theorem 5.1. For an r-component link L = K1 ∪K2 ∪ · · · ∪Kr, r ≥ 2, it holds
that

(5.1) Υ3−r(L) = (α− α−1)r−2
∑

i<j


Υ1(Lij)

∏

k 6=i,j

Y0(Kk)


 ,
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where Lij = Ki ∪Kj, a two-component sublink of L.

Proof. We prove (5.1) by induction on (r, s), where r is the number of the compo-
nents of L, and s is the number of the crossings in a regular projection of L at which
the rth component Kr crosses under the other components K1, K2, . . . , Kr−1. We
order (r, s) lexicographically. For r = 2, (5.1) is trivial. So the proof of (5.1) is
divided into two steps:

Step 1. Assuming (5.1) for all links with less than r components, r ≥ 2, we prove
for (r, 0), that is, for a split link L = L′tKr, where L′ = K1∪K2∪· · ·∪Kr−1.

Step 2. Assuming (5.1) for all links with less than r components and r-component
links but with smaller s, r ≥ 2, we prove for (r, s).

Step 1. By Lemma 3.1, we have

(5.2) Υ3−r(L) = (α− α−1)Υ4−r(L′)Y0(Kr)

since Υ2−r(L′) = Υ3−r(L′) = 0 by Theorem 4.1. By the inductive hypothesis,

(5.3) Υ4−r(L′) = (α− α−1)r−3
∑

i<j<r


Υ1(Lij)

∏

k 6=i,j

Υ0(Kk)


 .

Also, since each Lir, 1 ≤ i ≤ r − 1, is a split link, Υ1(Lir) = 0, and thus we obtain
(5.1) for this case.

Step 2. Let (L+, L−, L0, L∞) be a mixed skein quadruple as given in Section 3.
Supposing that Theorem 5.1 is true for L− (resp. L+), we wish to verify Theorem
5.1 for L+ (resp. L−).

By Lemma 3.2, we have

(5.4) Υ3−r(L+)− Υ3−r(L−) = αν
(
Y2−r(L0)− α−4µ+2Y2−r(L∞)

)
.

Since L0 and L∞ have r − 1 components, Theorem 4.1 yields Y2−r(L0) =
α−2λ0Y2−r(L̇0) and Y2−r(L∞) = α−2λ∞Y2−r(L̇∞), and so, by using (3.7)-(3.10)
and (3.12), (5.4) becomes

(5.5) Υ3−r(L+)− Υ3−r(L−) = α2µ′−1Y2−r(L̇0)− α−2µ′+1Y2−r(L̇∞),

where µ′ = λr−1,r
+ .

From (2.14), we have:

Y2−r(L̇0)(5.6)

= (α− α−1)r−2
r−1∏

j=1

Y0(K
j
0) = (α− α−1)r−2Y0(Kr−1

0 )
r−2∏

j=1

Y0(Kj);

Y2−r(L̇∞)(5.7)

= (α− α−1)r−2
r∏

j=1

Y0(Kj
∞) = (α− α−1)r−2Y0(Kr−1

∞ )
r−2∏

j=1

Y0(Kj).
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Substituting (5.6) and (5.7) for (5.5), we obtain:

Υ3−r(L+)− Υ3−r(L−)(5.8)

= α2µ′−1(α− α−1)r−2
(
Y0(Kr−1

0 )− α−4µ′+2Y0(Kr−1
∞ )

) r−2∏

j=1

Y0(Kj),

and so, by (3.17) in Lemma 3.3, we obtain:

(5.9) Υ3−r(L+)− Υ3−r(L−) = (α− α−1)r−2 (f1(L+)− f1(L−)) ,

which completes the proof since Υ3−r(Lδ) = (α−α−1)r−2f1(Lδ) means that Theo-
rem 5.1 is true for Lδ, δ = +, −. ¤

Theorem 5.1 is equivalent to the following:

Theorem 5.1(F). For an r-component link L = K1∪K2∪· · ·∪Kr, r ≥ 2, it holds
that

(5.10) Φ3−r(L) = (a + a−1)r−2
∑

i<j


Φ1(Lij)

∏

k 6=i,j

F0(Kk)


 .

6. The fourth term

In this section, we prove the following theorem giving a formula for the fourth
coefficient polynomial.

Theorem 6.1. For an r-component link L = K1 ∪K2 ∪ · · · ∪Kr, r ≥ 2, it holds
that

Υ4−r(L) = (α− α−1)r−2
∑

i<j


Υ2(Lij)

∏

k 6=i,j

Y0(Kk)


(6.1)

+ (α− α−1)r−2
∑

i<j
k 6=i,j


Υ1(Lij)Y1(Kk)

∏

l 6=i,j,k

Y0(Kl)




+ (r − 2)(α− α−1)r−3
∑

i<j


Υ1(Lij)

∏

k 6=i,j

Y0(Kk)


 .

Proof. We prove (6.1) by similar induction to the proof of Theorem 5.1. For r = 2,
(6.1) is trivial. So the proof of (6.1) is divided into two steps:

Step 1. Assuming (6.1) for all links with less than r components, r ≥ 2, we prove for
a split link L = L′ tKr, where L′ = K1 ∪K2 ∪ · · · ∪Kr−1.
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Step 2. Let (L+, L−, L0, L∞) be a mixed skein quadruple as given in Section 3. As-
suming that Theorem 6.1 is true for L− (resp. L+), we show Theorem 6.1 for
L+ (resp. L−).

Step 1. By Lemma 3.1, we have:

(6.2) Υ4−r(L) = (α− α−1)
3∑

i=0

Υ5−i−r(L′)Yi(Kr) +
2∑

i=0

Υ4−j−r(L′)Yj(Kr).

By Theorem 4.1, we have:

(6.3) Υ2−r(L′) = Υ3−r(L′) = 0.

By Theorem 5.1, we have:

(6.4) Υ4−r(L′) = (α− α−1)r−3
∑

i<j<r


Υ1(Lij)

∏

k 6=i,j,r

Y0(Kk)


 .

By the inductive hypothesis, we have:

Υ5−r(L′) = (α− α−1)r−3
∑

i<j<r


Υ2(Lij)

∏

k 6=i,j,r

Y0(Kk)


(6.5)

+ (α− α−1)r−3
∑

i<j<r
k 6=i,j,r


Υ1(Lij)Y1(Kk)

∏

l 6=i,j,k,r

Y0(Kl)




+ (r − 3)(α− α−1)r−4
∑

i<j<r


Υ1(Lij)

∏

k 6=i,j,r

Y0(Kk)


 .

Substituting (6.3)-(6.5) for (6.2), we obtain:

Υ4−r(L)(6.6)

= (α− α−1)r−2
∑

i<j<r


Υ2(Lij)

∏

k 6=i,j,r

Y0(Kk)


Y0(Kr)

+ (α− α−1)r−2
∑

i<j<r
k 6=i,j,r


Υ1(Lij)Y1(Kk)

∏

l 6=i,j,k,r

Y0(Kl)


Y0(Kr)

+ (r − 3)(α− α−1)r−3
∑

i<j<r


Υ1(Lij)

∏

k 6=i,j,r

Y0(Kk)


Y0(Kr)
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+ (α− α−1)r−2
∑

i<j<r


Υ1(Lij)

∏

k 6=i,j,r

Y0(Kk)


Y1(Kr)

+ (α− α−1)r−3
∑

i<j<r


Υ1(Lij)

∏

k 6=i,j,r

Y0(Kk)


Y0(Kr).

This implies (6.1) since Υ2(Lir) = Υ1(Lir) = 0, i < r.
Step 2. By Lemma 3.2, we have:

(6.7) Υ4−r(L+)− Υ4−r(L−) = αν
(
Y3−r(L0)− α−4µ+2Y3−r(L∞)

)
.

Since L0 and L∞ have r − 1 components, Theorem 4.1 yields Y3−r(L0) =
α−2λ0Y3−r(L̇0) and Y3−r(L∞) = α−2λ∞Y3−r(L̇∞), and so, using (3.7)-(3.10) and
(3.12), (6.7) becomes

(6.8) Υ4−r(L+)− Υ4−r(L−) = α2µ′−1Y3−r(L̇0)− α−2µ′+1Y3−r(L̇∞),

where µ′ = λr−1,r
+ . From (2.14), for δ = 0, ∞, we have:

Y3−r(L̇δ)(6.9)

= (α− α−1)r−2
r−1∑

i=1


Y1(Ki

δ)
∏

j 6=i

Y0(K
j
δ )


 + (r − 2)(α− α−1)r−3

r−1∏

k=1

Y0(Kk
δ )

= (α− α−1)r−2Y0(Kr−1
δ )

r−2∑

i=1


Y1(Ki)

∏

j 6=i,r−1

Y0(Kj)




+ (α− α−1)r−2Y1(Kr−1
δ )

r−2∏

j=1

Y0(Kj)

+ (r − 2)(α− α−1)r−3Y0(Kr−1
δ )

r−2∏

k=1

Y0(Kk).

Thus we have:

Υ4−r(L+)− Υ4−r(L−)(6.10)

= (α− α−1)r−2α2µ′−1
(
Y0(Kr−1

0 )− α−4µ′+2Y0(Kr−1
∞ )

)

r−2∑

i=1


Y1(Ki)

∏

j 6=i,r−1,r

Y0(Kj)




+ (α− α−1)r−2α2µ′−1
(
Y1(Kr−1

0 )− α−4µ′+2Y1(Kr−1
∞ )

) r−2∏

j=1

Y0(Kj)
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+ (r − 2)(α− α−1)r−3α2µ′−1
(
Y0(Kr−1

0 )− α−4µ′+2Y0(Kr−1
∞ )

) r−2∏

k=1

Y0(Kk),

and so by Lemma 3.3, this becomes

Υ4−r(L+)− Υ4−r(L−)(6.11)
= (α− α−1)r−2 (g(L+)− g(L−)) + (α− α−1)r−2 (f2(L+)− f2(L−))

+ (r − 2)(α− α−1)r−3 (f1(L+)− f1(L−)) ,

which completes the proof since Υ4−r(Lδ) = (α−α−1)r−2f2(Lδ)+(α−α−1)r−2g(Lδ)+
(r − 2)(α− α−1)r−3f1(Lδ) means that Theorem 6.1 is true for Lδ, δ = +, −. ¤

Theorem 6.1 is equivalent to the following:

Theorem 6.1(F). For an r-component link L = K1∪K2∪· · ·∪Kr, r ≥ 2, it holds
that

Φ4−r(L) = (a + a−1)r−2
∑

i<j


Φ2(Lij)

∏

k 6=i,j

F0(Kk)


(6.12)

+(a + a−1)r−2
∑

i<j
k 6=i,j


Φ1(Lij)F1(Kk)

∏

l 6=i,j,k

F0(Kl)




− (r − 2)(a + a−1)r−3
∑

i<j


Φ1(Lij)

∏

k 6=i,j

F0(Kk)


 .

7. Final remarks

From the formulas of [5], we may ask if P2i−r−1(L; t), the ith coefficient polyno-
mial of the HOMFLY polynomial of an r-component link L, with i < r is obtained
from linking numbers and the HOMFLY polynomials of the j-component sublinks
of L with 1 ≤ j ≤ i; the case i = 1, 2, 3 is true by the theorems in [5]. The
simplest case is: if L is a Brunnian link, then is it true that P2i−r−1(L; t) = 0 for
1 < i < r? See [5, Question 4.3]. Przytycki and Taniyama [12] solved this question
affirmatively in a more general context and further proved a similar result for the
Kauffman polynomial.

For the Kauffman polynomial, from the formulas given in this paper, we may
ask if Fi−r(L; a) (or Yi−r(L;α)), the ith coefficient polynomial of the Kauffman
polynomial of an r-component link L, with i < r is obtained from linking numbers
and the Kauffman polynomials of the j-component sublinks of L with 1 ≤ j ≤
(i + 1)/2. The case where 1 ≤ i ≤ 4 is true by the theorems in this paper.
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Errata in [3]

In this paper, we use several formulas given in [3]. However, some of them
contain errata. In [4, Appendix], some errata are corrected, but regrettably not all.
Here we correct remaining errata.

• Equation (2.2) in [3] contains an erratum. The correct form is

Y (L; a, z) = (−1)c+1F (L;
√−1a,−√−1z).

• Equation (2.4) in [3] contains errata. The correct form is

Y1−c(L; a) = P1−c(L; a−1) = a−2λ(a− a−1)c−1
c∏

j=1

Y0(Kj ; a).
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