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Design of Fuzzy IMM Algorithm based on Basis Sub-models
and Time-varying Mode Transition Probabilities

Hyun-Sik Kim and Seung-Yong Chun

Abstract: In the real system application, the interacting multiple model (IMM) based algorithm
requires less computing resources as well as a good performance with respect to the various
target maneuverings. And it further requires an easy design procedure in terms of its structures
and parameters. To solve these problems, a fuzzy interacting multiple model (FIMM) algorithm,
which is based on the basis sub-models defined by considering the maneuvering property and the
time-varying mode transition probabilities designed by using the mode probabilities as inputs of
a fuzzy decision maker, is proposed. To verify the performance of the proposed algorithm,
airborne target tracking is performed. Simulation results show that the FIMM algorithm solves all
problems in the real system application of the IMM based algorithm.

Keywords: Basis sub-models, fuzzy interacting multiple model algorithm, maneuvering target
tracking, time-varying mode transition probabilities.

1. INTRODUCTION

The Kalman filter, which is well known as a
recursive estimator based on optimal filter theory, has
been widely used in target tracking. However, in the
case that a single filter is used for maneuvering target
tracking, its performance becomes inferior. For this
reason, many kinds of Kalman filters have been
studied in order to solve this problem. Among them,
the interacting multiple model (IMM) algorithm is
recognized to have a good performance although it is
a sub-optimal filter [1-4]. In the IMM algorithm, if the
target maneuvering is similar to the output of a sub-
model, the tracking error is small; otherwise, the error
is big. For this reason, it requires many sub-model
numbers in order to have a good performance with
respect to the various target maneuverings. But it is
not reasonable to use the algorithm with too many
computing resources in the real system application.

To solve this problem, various IMM based
algorithms have been suggested. Munir [5] proposed
the algorithm that has sub-models determined by the
estimated acceleration. Although it has a small
number of sub-models as well as a good performance,
it has difficulty in determining the acceleration levels
according to the maneuvering property. Wang [6]
proposed the algorithm that has sub-models whose
process noise variances are adjusted by the fuzzy
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system. Although it has a small number of sub-models
as well as a good performance, it has a difficulty in
determining the fuzzy system according to the expert
knowledge. As well, Lee [7] proposed the algorithm
that has three optimal sub-models whose parameters
are adjusted by the genetic algorithm (GA). Although
it has a small number of sub-models as well as a good
performance, it still has a computational burden in
optimizing sub-models by the GA. However, the
performance of the IMM algorithm depends on the
mode transition probabilities as well as the sub-
models, i.e., if the mode transition probabilities are
adjusted, the performance of the IMM algorithm is
better than that of the conventional IMM algorithm.
The performance of the IMM algorithm depends on
the mode transition probabilities as well as the sub-
models, i.e., if the mode transition probabilities are
adjusted, the performance of the IMM algorithm is
better than that of the conventional IMM algorithm.
Campo [8] proposed the algorithm that adjusts the
mode transition probabilities by the sojourn time
dependent Markov model switching. Although it has
superior performance, it has difficulty in determining
the design parameters.

To resolve these problems, a fuzzy interacting
multiple model (FIMM) algorithm, which is based on
the basis sub-models defined by considering the
maneuvering property and the time-varying mode
transition probabilities designed by using the mode
probabilities as inputs of a fuzzy decision maker, is
proposed.

The design procedure of the FIMM algorithm
encompasses the following contents: the practical
definition method of the basis sub-models defined by
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considering the maneuvering property; and the
detailed design method of the time-varying mode
transition probabilities designed by using the mode
probabilities as inputs of a fuzzy decision maker.

The proposed algorithm has four major advantages:
1) it has less computing resources because the number
of the basis sub-models is determined by the
maneuvering property 2) it has good performance
because the mode transition probabilities are adjusted
by the fuzzy decision maker 3) it has a simple fuzzy
partition with a small number of parameters and a
simple fuzzy rule that has the small rule number
because the mode probabilities are normalized values
and the sum of them is 1.0, and 4) it easily extends the
simplified fuzzy reasoning method [9,10] because the
mode transition probabilities have the form of a
matrix.

The IMM algorithm is introduced in Section 2. The
design of the FIMM algorithm is described in Section
3, and the simulation results of the FIMM algorithm
with respect to the various target maneuverings are
presented in Section 4. Finally, the conclusions are
summarized in Section 5.

2. IMM ALGORITHM

In this section, the main elements of the IMM
algorithm, which is based on the Kalman filter, are
introduced.

The IMM algorithm is recognized to have a good
performance with respect to the various target
maneuverings although it is a sub-optimal filter based
on the Markov chain whose transition depends on the
latest state. The detail contents are well explained in
[3], and the main elements of the IMM algorithm are
as follows:

The mode transition probabilities, which are related
to the Markov chain, are defined as

py = P{M ;(k)|M; (k -}

P b o Dy
Pn Pn baj (1)
pPn P2 Py
where i, j=1...,r and r is number of sub-
models.

In addition, the merging probability is defined as

1
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where ¢ J is the normalization constant of the j-th

sub-model.
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And then, the mixed state and the state covariance
are defined as
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where %’ (k|k) is the state vector at the scan .

Also, the mode probability is defined as
1

/zj(k)=;A,-(k)c-, (6)

where ¢ is a normalization constant.
r
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and A ;(k) isalikelihood function defined as

A=

__nl_exp(_%vj ©)S; (b, (k)),
Qa)"=|s; (k)|

)
v;(k)=z(k)-2;(k—=1lk), S;(k) is the innovation
covariance that includes the measurement covariance,
and n. is the dimension of measurement vector z(k).

Finally, the combined state and the state covariance
are defined as

x (k[k) =2 % (klyu; (), ©)
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PGk = 1 (k) {Pf(k{k) (10)
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From the above mentioned equations, we note that
the performance of the IMM algorithm depends on the
mode transition probabilities as well as the sub-
models, i.e., if the target maneuvering is similar to the
output of a sub-model, the tracking error is small;
otherwise, the error is relatively big; and if the values
of a column in (1) are increased, the corresponding
sub-model is strongly reflected in generating the
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Fig. 1. FIMM algorithm (one cycle).

combined state in (9); if the values of all columns are
equally assigned, all sub-models are equally reflected.

3. DESIGN OF FIMM ALGORITHM

In this section, a FIMM algorithm, which is based
on the basis sub-models defined by considering the
maneuvering property and the time-varying mode
transition probabilities designed by using the mode
probabilities as inputs of a fuzzy decision maker, is
designed.

The one cycle FIMM algorithm that has the fuzzy
decision maker is shown in Fig. 1.

The detail design procedure of the FIMM algorithm
is divided into the following two phases:

In the first phase of the design procedure, the
practical definition method of the basis sub-models,
which is defined by considering the maneuvering
property, is described as follows:

Generally, the maneuvering property can be
expressed by

Maneuvering Property = f(v, a, @, T, o,,),(11)

where v is the target speed, a is the target acceleration,
@ is the target angular velocity, T is the sampling

period, and o, is the standard deviation of the

measurement noise.

In addition, the kinematic models can be divided
into four types: a constant velocity (CV) model, a
singer (SG) model [4], a constant acceleration (CA)
model, and a coordinated turn (CT) model.

However, if the maneuvering property and the
kinematic models are considered in the definition of

Single Model
Tracking Area

Multiple Model
Tracking Area

Trajectory

Model with
a=0or az0

Model with @ =0

Fig. 2. Sub-model definition method.

sub-models by designer, the definition is executed by
the method that is shown in Fig. 2.

This method explains that the maneuvering
property is closely related with elements such as the
target speed, target acceleration, target angular
velocity, sampling period, and standard deviation of
the measurement noise, i.e., if the sampling period is
small or the measurement noise is large, the number
of sub-models can be reduced because some
unnecessary sub-models may exist.

According to the analysis of the above mentioned
definition method, the kinematic models can be
interpreted as the acceleration models that have
different acceleration rates and axis-coupling rates as
follows:

CV <SG<CA<CT. (12)

This relation implies that SG and CA models can be
unnecessary sub-models because they can be made by
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the weighted sum of the CV and CT models that can
be candidates for the basis sub-models. And the @
of the CT model can be determined as the maximum
tuning rate of the desired target, which is generally
known although its tuning direction is not known.

Therefore, two basis sub-models composed of CV
model and CA model can be sufficient for tracking of
the vertical maneuvering target and three basis sub-
models composed of one CV model and two CT
models can be sufficient for tracking of the horizontal
maneuvering target in the horizontal plane.

Consequently, the number of the basis sub-models
is small. Note that it solves the problem of less
computing resources in the real system application of
the IMM based algorithm.

In the second phase of the design procedure, the
detailed design method of the time-varying mode
transition probabilities, which is designed by using the
mode probability as inputs of a fuzzy decision maker,
is described as follows:

To adjust the mode transition probabilities in (1),
the performance index is needed for evaluating each
sub-model. However, the mode probability plays a
role in evaluating each sub-model because the mode
probability in (6) includes the likelihood function in
(8). Therefore, the mode probability is used as a fuzzy
input.

The fuzzy partition that has five bell-shaped
membership functions is shown in Fig. 3.

This partition has the membership function that is
defined as

O;

2
£i( 1y )=exp —f”’ C’J , (13)

where u; is the mode probability of ;-th sub-

model, c¢; and o; are respectively the center and

width of i -th membership function.

In addition, it employs the facts that the mode
probabilities in (6) are normalized values and the sum
of them is 1.0. This is directly related with using the
mode probabilities as fuzzy inputs. From these facts,
the centers of DB and RB membership functions are
respectively set to 1.0 and 0.0, and the center of ZO
membership function is easily set to
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Fig. 3. Fuzzy partition for FIMM.

CZO =1/l". (14)

And the center of DM membership function is
properly set by considering the similarity of sub-
models, i.e., if the degree of similarity between sub-
models is high, cpy is close to czp; otherwise, it is far
from czp. Then, the center of RM membership
functions is set by the above mentioned facts:

crar = (1=cpp)/(r =1). (15)

And the widths of the membership functions are
equally set for the design simplicity:

o, =0. (16)

(16) should be properly set in order to let the
partition have a meaning in terms of a continuous
overlap of the membership functions.

Therefore, the fuzzy partition has both simple
structure and two design parameters of cp;, and o.

The fuzzy reasoning method employs the simplified
method whose consequent part has a constant value.
Therefore, it easily extends a constant value to a
matrix because the mode transition probabilities have
the form of a matrix.

The fuzzy rule has the following form:

R :if
and u, is A, then py;=py,

is A and p, is Ay and

(17)

where R"(n=0, 1, 2,...,r) denotes the n-th fuzzy
rule, 4; denotes the membership function of the j-th
sub-model, and pj that comprises the fuzzy

consequent part is expressed by

¢ € g
S as
e €y oG
where
1/r, n=0
€j =19 Cmax> n#z0 and j=n (19)

(I=cpax)/(r =1, n#0 and j#n.

Therefore, the fuzzy reasoning method has both a
simple structure and an one design parameter of Cpay.

The fuzzy rule for tracking of the maneuvering
target in a horizontal plane has four rules that are
expressed by

R%: if w1y is Z0 and py is ZO and py is ZO

0
then P = Pj»
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R': if ty is bigger than DM and u, is smaller
than RM and py is smaller than RM then

1
Pij = Pij>

R*: if wy is bigger than DM and s is smaller
than RM and py is smaller than RM then

2
Py = Py

R: if w3 is bigger than DM and py is smaller
than RM and p, is smaller than RM then

Py = Py
(20)

These rules include the following rules: if the
dominant model exists, the values of the
corresponding column in (1) are increased in order to
strongly reflect the corresponding sub-model in
generating the combined state in (9); otherwise, the
values of all columns are equally assigned in order to
uniformly reflect all sub-models. It enables that the
adjusted mode transition probabilities are expressed
by the form of the weighted sum of the consequent
parts.

Therefore, the fuzzy rule has both simple structure
and the rule number of r+1.

The fuzzy defuzzification is expressed by the
following form:

[
2 WaPj
py (k) ="=—, @1
2 W
n=1

where

wy, = [ [y, (e (k1)) (22)

i=1

This fuzzy decision maker replaces the time-
invariant py in (1)-(3) to the time-varying p; (k) in
(21). It enables to let the FIMM algorithm have better
performance than that of the conventional IMM
algorithm.

Consequently, the fuzzy decision maker has simple
structures and fewer design parameters as well as a
good performance. Note that they solve the problems
of both a good performance and an easy design
procedure in the real system application of the IMM
based algorithm.

From the above mentioned procedure, the FIMM
algorithm, which is based on the basis sub-models
defined by considering the maneuvering property and
the time-varying mode transition probabilities
designed by using the mode probabilities as inputs of
a fuzzy decision maker, has been designed.

4. SIMULATION RESULTS

The performance of the FIMM algorithm is tested
with the problem of tracking an airborne target that is
moving, which is described by the constant velocity
flight and the coordinated turn flight in the horizontal
plane. This was also shown in [11,12].

The process equations, which are related to the
constant velocity flight and the coordinated turn flight
of the airborne target, are defined as

1 T 0 0 T%/2
=0 L0 s T, @)
X = x v(k),
0O 01T T2/2
00 0 1 T
(1 sinoT/o 0 —(1-cosal)/w
0 T 0 —sinwT
(k4 1) = cos@ ' sinw )
0 (I-cosal)/w 1 sinwT /@
| 0 sinwT 0 coswT
T%/)2
AT 4)
v(k).
/2
T
The state vector is defined as
. AT
xtky=[¢ & n Al (25)

where & and & are respectively the position and
velocity of the target with respect to the x-axis, and
n, n are respectively the position and velocity of
the target with respect to the y-axis.

The measurement equation is defined as

1 0

z(k){o 01

g}x(k) +w(k). 26)

The simulation scenario of the maneuvering target
is designed as follows:

A nonmaneuvering flight during scan 1 to 20 with a
speed of 300m/s; a 180° turning flight during scan
21 to 33 with a turning rate of 3.74°/s (2g accelerat-
ion); a nonmaneuvering flight during scan 34 to 53; a
—180° turning flight during scan 54 to 66 with a
turning rate of —3.74°/s; a nonmaneuvering flight
during scan 67 to 86; a 180° turning flight during
scan 87 to 112 with a turning rate of 1.87°/s; finally,
a nonmaneuvering flight during scan 113 to 132.

In order to compare the proposed FIMM algorithm
with conventional IMM algorithms, an IMM1 with no
knowledge and an IMM?2 with a heuristic knowledge
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Fig. 4. True trajectory of maneuvering target.

are considered. The initial state of the target in
Cartesian coordinates is determined by

x(0)=[30000 -172 30000 -246]" .

The process noise of the true system is zero and the
true trajectory is shown in Fig. 4.

The sampling period of the sensor system is
determined by 7 =3.5. The standard deviation of
measurement noise in the sensor system is determined
by o,, =30.0.

In order to track the target, the number of sub-
models is » =3, which is determined by

M=[a),=0, w, =2g, a)3=—2g]T.
The noise covariance is
/4 T3 0 0
3 2
T 2 122 o o o, o7
0 o T4 T
0 0 T2 1)

where o, =0.004.

The standard deviation of measurement noise in the
filter is the same as the sensor system.

The above parameters are equally applied to all
algorithms. The other parameters are given in Table 1.

The performance of the FIMM is tested by 100
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times Monte Carlo simulation. The results are shown
in Figs. 5-9. These are the root of mean square error
(RMSE), which is expressed by

N

2

=

RMSE = \/% (x(k) _y (k)j(x(k) -y (k))T (28)

Figs. 5 and 6 respectively show the RMSE of target
position and velocity with respect to & -axis. And
Figs. 7 and 8 respectively show the RMSE of target
position and velocity with respect to 7 -axis. While

the performances of all algorithms have the total
relation of IMMI1 << FIMM < IMM?2 in the case

Table 1. Parameters of algorithms.

IMM1

IMM2 FIMM

0.33 033 033
p;=|0.33 033 033
0.33 033 033

IMM’s

0.95
p;=10.025 070 025
0.025 0.25 0.70

033 033 0.33
p;(0)=1033 033 0.33
033 033 0.33

0.05 0.05

Fuzzy’s -

- cpy =0.66, =033, ¢, =0.98
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that a considerably dominant sub-model exists, they
have the total relation of IMM?2 << IMM1 < FIMM
in the case that an inconsiderably dominant sub-model
exists during scan 87 to 112. These are caused by the
facts that the FIMM has the time-varying probabilities
while the IMMI1 and IMM2 have the time-invariant

Table 2. Comparison of performances and CPU time.
) CPU
¢ & 7 n time
[sec]
IMMI1 | 24.785 | 13.614 | 24.066 | 12,793 | 0.0048
IMM?2 | 23.854 | 13.246 | 22.749 | 13.035 ] 0.0048
FIMM |23.873 | 9.773 |22.691 | 9.272 | 0.0063

probabilities. These mean that FIMM is most robust
with respect to the overall target maneuvering because
the basis sub-model in (12) and fuzzy decision maker
in (21) act well.

Table 2 shows the numerical comparison of the
FIMM and the conventional IMM algorithms. Each
element is the average value of both the average value
of RMSE in the case that an inconsiderably dominant
sub-model exists and the average value of RMSE in
the case that a considerably dominant sub-model
exists. In terms of the performances, the position
performances of the FIMM are better than the other
algorithms. Especially, the velocity performances of
the FIMM are superior to the other algorithms. And in
terms of one cycle computing resources, the fuzzy
decision maker of the FIMM requires the computing
resource that is equivalent to that of one sub-model of
the conventional IMM algorithm. Therefore, the
FIMM algorithm requires the computing resources of
r+1 sub-models while the other algorithms can
require the computing resources of more than 2r
sub-models in order to obtain the same performances
in general.

These values quantitatively verify the fact that
FIMM is most effective and robust with respect to the
overall target maneuvering.

Fig. 9 shows the RMS value of the mode transition
probabilities in (21). The FIMM algorithm is
effectively adjusting the mode transition probabilities
with respect to the change of the target maneuvering,.
In the case that a dominant sub-model exists, the
values of the corresponding column in (1) are
increased in order to strongly reflect the
corresponding sub-model in generating the combined
state in (9); otherwise, the values of all columns are
equally assigned in order to equally reflect all sub-
models.

Although the comparisons are not executed under
the same conditions with respect to the IMM based
algorithms because there does not yet exist the
algorithm capable of solving all the problems in the
real system application of the IMM based algorithm,
they show well that the FIMM algorithm has
meaningful terms.

5. CONCLUSIONS

In this paper, the fuzzy interacting multiple model
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algorithm, which is based on the basis sub-models
defined by considering the maneuvering property and
the time-varying mode transition probabilities
designed by using the mode probabilities as inputs of
a fuzzy decision maker, has been proposed.

In the first phase of the design procedure, the
practical definition method of the basis sub-models
defined by considering the maneuvering property has
been described in order to allow the algorithm to have
fewer computing resources.

In the second phase of the design procedure, the
detailed design method of the time-varying mode
transition probabilities designed by using the mode
probability as the input of the fuzzy decision maker
has been described in order to let the algorithm have
both a good performance and an easy design
procedure.

The proposed algorithm has four major advantages:
1) it has less computing resources because the number
of the basis sub-models is determined by the
maneuvering property 2) it has a good performance
because the mode transition probabilities are adjusted
by the fuzzy decision maker 3) it has a simple fuzzy
partition that has a small number of parameters and a
simple fuzzy rule that has the small rule number
because the mode probabilities are normalized values
and the sum of them is 1.0, and 4) it easily extends the
simplified fuzzy reasoning method because the mode
transition probabilities have the form of a matrix.

To wverify the performance of the proposed
algorithm, airborne target tracking has been
performed. The simulation results have shown that the
FIMM algorithm solves all problems in the real
system application of the IMM based algorithm. With
the Monte Carlo simulation, the results have
guaranteed the performances of the FIMM algorithm.
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