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H, Filter for Time Delay Systems

Young Soo Suh, Young Shick Ro, and Hee Jun Kang

Abstract: An H, filter is derived for time delay systems, where there are time delay terms in the
state and in the output. A method to compute the H> norm of time delay systems is proposed.
Based on the H, norm computation method, an H, filter design is formulated as a nonlinear

optimization problem.
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1. INTRODUCTION

Many physical systems have time delay elements,
which reflect sensor process time, computation time
and communication time. For example, in [1], motor
speed measurement is time delayed due to
characteristics of motor encoders. These systems can
be represented by state space equations, where there
are time delay terms in the state and in the output. The
purpose of this paper is to propose a Kalman-filter-
type observer for time delay systems.

In the case of time delay systems, to design an
asymptotically stable observer without considering
estimation performance is not an easy task. There are
several papers on the design of asymptotically stable
observers: a modal observer [2], reduced-order
observer [3], and output-injection based observer [4].
Recently, an observer [5] is proposed, where the He
norm is used as a performance index. The Ho filter
using delay independent stability conditions are
considered in [6,7], where linear matrix inequalities
are used.

However, few observers have been proposed using
the A, norm despite the utility of the A, norm as a
performance index for many problems. In [8], an
observer for time delay systems has been proposed
using delay independent stability conditions. In this
paper, an observer whose performance index is an H;
norm is proposed, where delay dependent stability
conditions are used. Note that the optimal H, norm
observer is the standard Kalman filter when there are
no time delay terms. Thus, the proposed filter can be
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considered as a Kalman filter for time delay systems.
Notation: For a matrix M € C™" given by
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the column string csM is defined by
A
CSM:[”’H My ey, |y myy <oy |
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2. PROBLEM STATEMENT

Consider linear time-invariant systems described by

K(t) = Ayx(t) + Ax(t — B) + Bio(t) + Byu(r),

y(t) = Cox(t) + Cyx(t — h) + Cyv(2), M

where x e R" is the state, @ € R? is the process noise
u e R%is the input,y e R” is the measurement, and
ve R is the measurement noise. The /4 is constant
known time delay in the states and the outputs.

It is assumed that v and @ are uncorrelated white
Gaussian processes, which satisfy

E{a)(t)} =0, E{a)(t)a)(s)'} =15(t-s),

E{v(t)} =0, E{v(t)v(s)'} =158(t-s). @

The objective of this paper is to derive an H, filter
for a time delay system (1), where a filter has the
following form:

(1) = AR(t) + ARt~ h) (3)
—K (Co&(t) + &t — )= p(2)) + Byu(?).

Defining the estimation error e(t) as
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e(t) £ x(r) - %(t),
we obtain

G, 1 é(t) = Age(t) + Aje(t — h) + BE(Y), 4)
where

Ay 2 A-KCy, A4%4-KC,

B2[B,-KCG,], &) {“v’((t’ﬂ

The H, norm of the error system is used as the
performance index estimate

T
|G|z = Ik by = lim E{% Ie’(t)e(t)dt} )
0

If there are no time delay terms (i.e., 4, = 0 and C,
= (), then (1) becomes

x(t) = Ayx(t) + Bjo(t) + Byu(t),

y(1) = Cox(r) + Cyw(®),
and the filter, minimizing the H, norm (5) for this
non-delayed system, is the standard Kalman filter.

Thus we can call the proposed filter minimizing (5) a
Kalman filter for time delay systems.

3. H, NORM COMPUTATION

The H, norm of G, is expressed in terms of the
matrix function P(s) in the next theorem.
Theorem 1: If G, is stable, then

|G|z =7+ (B'P(0)B), 6)

where P(s), 0<s<his continuously differentiable
and satisfies
P(0) = P'(0),
P(s)= 4\ P(s)+ AP'(h—s), 0<s<h, 7
P(0)+ P'(0)+1 =0.
Remark 1: P(s) isrelated to the Lyapunov functional

of state delay system (4). Let V(¢), ¢<C[-h,0] be
defined by

V($)2 $OPOYO+ 20O || PO AJ(-h+rdr o
+ [ 9hen [ PG 5)Dg(-h+ rydsdr,

where P(s)Z P'(-s) ifs <0. Equation (7) is derived
from

4

7 V(x) = —x'()x(2), &)

where x,(r)£x(t+r), re[-h,0].

Remark 2: If there are no time delay terms, the
result in Theorem 1 becomes a standard H, norm
computation. See, for example, Theorem 3.3.1 in [9]:
the H, norm of a stable non-delay system is given by

|G| =7+ (B'PB), (10)
where
A\P+ P4y +1=0.

Note that conditions (7) are equivalent to those in
(10)ifh=0,4,=0and C; =0.

The proof of Theorem 1 will be given using Lemma
1 and 2.

Lemma 1: If system G, is stable, then

2 1 e N
6.z =+~ [71r(G.(jo)Gi(~j@))de. (1)
Proof: The result is standard (see Chap 3.3 in [9]).

Lemma 2: If G, is stable and P(s), 0<s<h
satisfies (7), then

P(0) :i [T a7 oya! (joydo, (12)
where
A(jo) 2 jol - 4y — He 7", (13)

Proof: See [10].
(Proof of Theorem 1) From Lemma 1,

Tr(B'P(0)B)
=Tr {i f: BA™ jwya (- jw)Bda)}

- % [“1-{B a7 oy a7 (- je) B} dos.

Since f: f(o)ydo = J::O f(—jw)dw, we have
Tr(B'P(0)B)
_ 2_17; [C1r{Ba7 oy (jyB)do

= 2—17[- “1r{Gi(-jw)G,(jo)} do.

Since Tr(4B) = Tr(BA) whenever AB and BA are
square matrices, we have

Tr (B'P(0)B) = i [ 1r{G. ()Gl (~jo)}do = |G
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The last equality is from (11).
If G, is stable, then ||Ge||§ can be computed from

P(0) in Theorem 1. How to check the stability of G,
will be considered later in Theorem 2; first we will
consider how to compute P(0) in the next lemma.

Lemma 3: If G, is stable, then P(0) and P(#)
satisfying (7) are given by

(IRAN+ (AR (IQRANE+(4 Q1)
Ry R,

. [csP(O)} _ [—cs]}, (14)
csP(h) 0

where
[RiR]2[%) 0]V

Matrices >; and V" are from the singular value
decomposition of the following

(I - J exp(HR)) = UF:S g}/*, (15)

22
where U and V are unitary matrices, and ;e R" ™

is a diagonal matrix whose diagonal clements are
nonzero singular values of (/ —Jexp(Hh)). Let E;
denote an nxn matrix with (i, j)-entry equal to 1

2.2
and all other entries equal to zero, and let E e R" "
be the block matrix E, [Ej;] (i.e., the (i, j)-block of E is
E;;). Matrices f and J are defined by

P (I®4) (®AE J{o 1}
|-U®ANE —u®A4) [ T |1 o]

Proof: See [11].

Note that P(0) can be computed from the matrix
exponential (15) and a simple linear equation (14).
Thus if G, is stable, then we can easily compute H,
norm: see (6).

Now the stability of G, is considered in Theorem 2,
where a stability condition for interval delay

he [O,f_z) is provided.

Theorem 2: Suppose G, is stable for #=0. If H has
imaginary eigenvalues { Jay, -, ja)k} and their corres-
ponding eigenvectors are given by

.1 Vi1
W2 Vi,2
vl — : IR vk = . N
%
Vi on? k21>

then G. is stable for s e [O,E ) where % is defined by

- R Vi
h = min |— In(—=
I<i<k| J

=k j@ vi,l+n2

> (16)

where v;;,0</< n? is any nonzero element of v;.

Theorem 2 is proved using Lemma 4 and 5. Lemma
4 is based on the fact that if G, is stable for # = 0 and

G, does not have any imaginary poles for ke [O,}_z ),
then G. is stable for %€ [0,}7).

Lemma 4: G, is stable for he [O,l;) if

* (G, is stable for A=0.
+ The following equation does not have any roots for

he[O,E):

det(jwl — Ay — Ae 7"y =0 (17)

Proof: See [12].
Stability of G, for 2 = 0 can be easily checked from

eigenvalues of A, + 4. On the other hand, checking
whether (17) has any roots for A e [0,17 ) is not easy:

(17) should be checked for all 0<w<o and

0<h<h. In the next lemma, it is shown that a root
jo of (17) (if any) is an eigenvalue of H.

Lemma 5: If (17) has a root @, then it is an

eigenvalue of H.
Proof: Suppose (17) has a root jw for A; then

there exists x(e C”)=0 such that
X' (joI — 4y — 4"y =0.

Taking the transpose (not complex conjugate), we
obtain

(ol — 4y — Ae7"x =0. (18)

Let aeC” be defined by

o
a _Joh

a=| lixe 2, (19)
a

where ¢;,1<i<n is a complex number. Let v be
defined by (# is the complex conjugate of u)

u
vE {_], 20)
u

where
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2
eC" . 21

The theorem is proved if we show that this v
(v#0 from the construction) satisfies (jwl — H)v =

0: that is, jeo is an eigenvalue of H. From the
definition of H, we obtain

(ool - Hy = [jol —-I®4) ~(IQA)E )
| (U®AE  jol+(I®4)
"( JjolI —(I® 4))u—-(I® 4)Ei 22)

(Jool +(1 ® Z))i + (I ® 4)Eu |

Partition (jwl — H)v into 2n complex vectors and
let the i-th block of (jwl —H)v be denoted by # €

C". Then r,1<i<n isgivenby

i = (ol = 43)8x ~ 4{(Ey@) + Eyi@ +-+ E,;@,)¥.
Noting the following relation

(B + Eyiay ++++ Ea,)X

Jjwh
_Joh
=e ? aa.
We obtain
Joh _Jjoh
r=(jol - 4)dae 2 -TAoe 2
Jjoh

=de 2 (jol - 4 - Ae ™"

@;(jol - 4) - 4e7*Mx=0, 1<i<n.

The last equality is from (18). Since r,, =-7,1<
i<n (see (22)), we have r =0, n+1<i<2n.
Hence, (jol - H)v=0, where v#0 (since x=0).

Proof of Theorem 2: From the proof of Lemma 5,
if (17) has a root @; for #; (1<i<k), then @, is

an eigenvalue of H. Furthermore, the corresponding
eigenvector of H is of the form:

Joik Joih Joiky ol
vi=|xxe 2 Xyxe 2 .. .X,xe 2 xxe 2
. . T

_Joik _Joil

x,¥e % .. x,Xe 2

Thus h; can be computed as follows:

Vig

By == In(

i

>

v
i,l+n2

where v;;,1<1 <n’ is any nonzero element of Vi
If the minimum value of A (1<i<k) ish,then (17)
does not have a root forh e[O,E ) From Lemma 4,

this proves the theorem.

Remark 3: Once a filter gain K is determined, we
can check the stability of the error system (4)
(Theorem 2) and compute its H, norm (Theorem 1).

4. FILTER DESIGN

In this section, the synthesis algorithm of an H,
filter (3) is proposed, where the algorithm is
formulated as a constrained nonlinear optimization
problem. When minimizing H, norm of G, over K
using Theorem 1, it should be guaranteed that G, is
stable. If the filter gain K is given, the stability of G,
can be checked using Theorem 2, which provides a

upper stability bound #(K) (ie., G.(K, h) is stable
as long as A <h ). Thus finding an optimal K, which

stabilizes G, and minimizes ||Ge (K,h)j,, can be
formulated as follows:
. A 2
ming J(K,h) £ ”Ge(K,h)"2 @3)

subject to h < h(K).

(23) is a constrained nonlinear optimization problem
whose global solution is difficult to find. A suboptimal
approach is proposed to compute K using penalty
methods [13]. A penalty function is defined by

2 )0 if h<h(K)
K,h)2 _ Z
PR {a(h—h)z if h=>h(K),

where a is a constant and is chosen so that p(X,
h)y> J(K,h) when h>h(K). With this penalty

function, a constrained optimization problem (23) can
be replaced by the following unconstrained
optimization problem:

ming J,(K,0) 2 |G (K. b2 + p(K.h).  (24)

Note that if h<}7(K) (i.e., G, is stable), then
J,(K,h)=J(K,h). Alsonote that if h>h(K), then
J,(K,h) is dominated by the penalty function
p(K,h). Thus the penalty function p(K,%) prevents
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unstable region searching when the H, norm is being
minimized.

An initial value of K can be chosen by minimizing
J(K, 0): the initial value corresponds to the Kalman
filter gain for a non-delayed system. Minimization
problem (24) can be solved, for example, using an
unconstrained nonlinear  optimization  function
fminunc in MATLAB optimization toolbox.

5. NUMERICAL EXAMPLE

Consider the following system

. 21 -10 0.2 1
x(@) = [0 B 1:{ x(t)+ [_1 _ J x(t-h)+ {0.2:' a(t)+ |:1:'u(t),

y(0)=[0 1x()+[1 1]x(z-h)+0.5v(), (25)

where w(f) and v(¢) are zero-mean, uncorrelated

white Gaussian processes satisfying (2). The time
delay is set to be 2 =0.3.

Optimization problem (24) was solved using
Matlab optimization toolbox. The initial value of the

0.6’7 T

05l the first element of state x

N, o
0.4 / st W A

T N A

estimated value

03 H

02} i

01t

0.1 ! .
0 1 2 3 4 5 6 7 8 9 10
time
0.4 T
™
0351 [ the second element of state x
P
| I\
03 | PRV ruth, 7\ N
H \"\{L ,\ o " In_\/.-"‘ Wy i e W ;;;f\v/”\“y}l,
025t 1
{ estimated value
o2} |
|
[
0.15 |
{
01 i
|
0.05 ‘
0 iWwvlJ

time

Fig. 1. Simulation results: true state and estimated
value.

Table 1. Time delay effects on estimation perfor-

mance.
h=0.1 h=0.3 =05 | A=0.7
|G.(K, 2| 0.0180 | 0.0243 | 0.0321 | 0.0424
Variance
of actual
.. 10.000088 | 0.00011 | 0.00013 |0.00015
estimation
crror

filter gain K is computed using 4 = 0, and ¢ in the
penalty function is set to 100. The computed values
are as follows:

0.0208 | —
K= ,h =1.6309,

2
G.(K,h)|; =0.0243.
0.0072 e )”2

Using the computed filter gain, state estimation
simulation was done, where a unit step signal was
applied to the control input u(r) at time 1s. The
simulation result is given in Fig. 1: it can be seen that
the proposed H, filter estimates system states well.

To see how the time delay affects estimation
performance, H, filters were designed for different A
values.

As seen in Table 1, computed H; norm increases as
time delay /4 increases. Variance of actual estimation
error, which was computed from a simulation, also
increases as time delay % increases. This verifies a
common belief that the time delay adversely affects
on estimation performance.

6. CONCLUSION

In this paper, an H, observer design method for
time delay systems has been proposed. The proposed
filter coincides with the standard Kalman filter when
there are no time delay terms. As the popularity of a
Kalman filter proves, in many practical situations an
H, norm observer provides most satisfactory results.
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