Sequence-Based Screening for a Putative ${\gamma}$-Butyrobetaine Hydroxylase Gene from Neurospora crassa

  • Hur Min-Sang (Division of Animal Science and Biotechnology, Sangji University) ;
  • Cho Jae-Yong (Division of Animal Science and Biotechnology, Sangji University)
  • 발행 : 2006.09.01

초록

The last step in L-carnitine biosynthesis in eukaryotic organisms is mediated by ${\gamma}$-butyrobetaine hydroxylase (EC1.14.11.1), a dioxygenase that converts ${\gamma}$-butyrobetaine to L-carnitine. This enzyme was previously identified from rat liver and humans, and the peptide sequence of human ${\gamma}$-butyrobetaine hydroxylase was used to search the Neurospora crassa genome database, which led to an identification of an open reading frame (ORF) consisting of 1,407 bp encoding a polypeptide of 468 amino acids. When this protein was expressed in Saccharomyces cerevisiae, the crude cell-free extract exhibited ${\gamma}$-butyrobetaine hydroxylase activity.

키워드

참고문헌

  1. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  2. Ahn, G.-T, J.-H. Kim, K.-M. Kang, M.-J. Lee, and I.-S. Han. 2004. BioPlace: A Web-based collaborative environment for effective genome research. J. Microbiol. Biotechnol. 14: 1081-1085
  3. Bieber, L. L. 1988. Carnitine. Annu. Rev. Biochem. 57: 261-283 https://doi.org/10.1146/annurev.bi.57.070188.001401
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 31 -37
  5. Bremer, J. 1983. Carnitine-metabolism and functions. Physiol. Rev. 63: 1420-1480 https://doi.org/10.1152/physrev.1983.63.4.1420
  6. Canovas, M., J. R. Maiquez, J. M. Obon, and J. L. Iborra. 2002. Modeling of the biotransformation of crotonobetaine into L-(-)-carnitine by Escherichia coli strains. Biotechnol. Bioeng. 77: 764-775 https://doi.org/10.1002/bit.10157
  7. Castellar, M. R., M. Canovas, H. P. Kleber, and J. L. Iborra. 1998. Biotransformation of D-(+)-carnitine by resting cells of Escherichia coli O44 K74. J. Appl. Microbiol. 85: 883-890 https://doi.org/10.1046/j.1365-2672.1998.00601.x
  8. Christianson, T. W., R. S. Sikorski, M. Dante, J. H. Shero, and P. Hieter. 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110: 119-122 https://doi.org/10.1016/0378-1119(92)90454-W
  9. Engemann, C., T. Elssner, S. Pfeifer, C. Krumbholz, T. Maier, and H. P. Kebler. 2005. Identification and functional characterization of genes and corresponding enzymes involved in carnitine metabolism of Proteus sp. Arch. Microbiol. 183: 176-189 https://doi.org/10.1007/s00203-005-0760-2
  10. Gietz, R. D., R. H. Schiestl, A. R. Williams, and R. A. Woods. 1995. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11: 355-360 https://doi.org/10.1002/yea.320110408
  11. Home, D. W. and H. P. Broquist. 1973. Role of lysine and $\varepsilon$-N-trimethyllysine in carnitine biosynthesis. I. Studies in Neurospora crassa. J. Biol. Chem. 248: 2170-2175
  12. Jung, H., K. Jung, and H. P. Klebar. 1993. Synthesis of L-carnitine by microorganisms and isolated enzymes. Adv. Biochem. Eng. Biotechnol. 50: 21-44 https://doi.org/10.1007/BFb0007385
  13. Jung, Y.-J., H. K. Kim, J. F. Kim, S.-H. Park, T.-K. Oh, and J.-K. Lee. 2005. A direct approach for finding functional lipolytic enzymes from the Paenibacillus polymyxa genome. 2005. J. Microbiol. Biotechnol. 15: 155-160
  14. Kleber, H. P. 1997. Bacterial carnitine metabolism. FEMS Microbiol. Lett. 147: 1-9 https://doi.org/10.1111/j.1574-6968.1997.tb10212.x
  15. Lee, J.-S., J. Yu, H.-J. Shin, Y.-S. Kim, J.-K. Ahn, C.-K. Lee, H. Poo, and C.-J. Kim. 2005. Expression of Hepatitis C virus structural proteins in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 15: 767-771
  16. Naidu, G. S. N., I. Y. Lee, E. G. Lee, G. H. Kang, and Y. H. Park. 2000. Microbial and enzymatic production of L-carnitine. Bioprocess Eng. 23: 627-635 https://doi.org/10.1007/s004490000212
  17. Notredame, C., D. Higgins, and J. Heringa. 2000. A novel method for multiple sequence alignments. J. Mol. Biol. 302: 205-217 https://doi.org/10.1006/jmbi.2000.4042
  18. Obon, J. M., J. R. Maiquez, M. Canovas, H. P. Kleber, and J. L. Iborra. 1999. High-density Escherichia coli cultures for continuous L-(-)-carnitine production. Appl. Microbiol. Biotechnol. 51: 760-764 https://doi.org/10.1007/s002530051459
  19. Swiegers, J. H., N. Dippenaar, I. S. Pretorius, and F. F. Bauer. 2001. Carnitine-dependent metabolic activities in Saccharomyces cerevisiae: Three carnitine acetyltransferases are essential in a carnitine-dependent strain. Yeast 18: 585-595 https://doi.org/10.1002/yea.712
  20. Swiegers, J. H., F. M. Vaz, I. S. Pretorius, R. J. A. Wanders, and F. F. Bauer. 2002. Carnitine biosynthesis in Neurospora crassa: Identification of a cDNA coding for $\varepsilon$-N-trimethyllysine hydroxylase and its functional expression in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 210: 19-23
  21. Tanphaichitr, V. and H. P. Broquist. 1973. Role of lysine and $\varepsilon$-N-trimethyllysine in carnitine biosynthesis. II. Studies in the rat. J. Biol. Chem. 248: 2176-2181
  22. van Roermund, C. W. T., Y. Elgersma, N. Singh, R. J. A.Wanders, and H. F. Tabak. 1995. The membrane of peroxysomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J. 14: 3480-3486
  23. Vaz, F. M., S. van Gool, R. Ofrnan, L. Ijlst, and R. J. A. Wanders. 1998. Carnitine biosynthesis: Identification of the cDNA encoding human $\gamma$-butyrobetaine hydroxylase. Biochem. Biophys. Res. Commun. 250: 506-510 https://doi.org/10.1006/bbrc.1998.9343
  24. Vaz, F. M., S. W. Fouchier, R. Ofman, M. Sommer, and R. J. A. Wanders. 2000. Molecular and biochemical characterization of rat $\gamma$-trimethylaminobutyraldehyde dehydrogenase and evidence for the involvement of human aldehyde dehydrogenase 9 in carnitine biosynthesis. J. Biol. Chem. 275: 7390-7394 https://doi.org/10.1074/jbc.275.10.7390
  25. Wieland, O. H., T. Deufel, and I. Paetzke-Brunner. 1985. Free and esterified carnitine: Colometric method, pp. 481-488. In H. U. Bergmeyer (ed.). Methods of Enzymatic Analysis, Vol. 8, 3rd Ed. VCH, Weinheim