Mechanism of Gel Layer Removal for Intermittent Aeration in the MBR Process

MBR 공정에서 간헐공기주입에 따른 겔층 제거 메커니즘

  • Noh Soo-Hong (Dept. of Environmental Engineering, Yonsei University) ;
  • Choi Young-Keun (Dept. of Environmental Engineering, Yonsei University) ;
  • Kwon Oh-Sung (Dept. of Environmental Engineering, Yonsei University) ;
  • Park Hee-Sung (Dept. of Environmental Engineering, Yonsei University)
  • 노수홍 (연세대학교 환경공학부) ;
  • 최영근 (연세대학교 환경공학부) ;
  • 권오성 (연세대학교 환경공학부) ;
  • 박희성 (연세대학교 환경공학부)
  • Published : 2006.09.01

Abstract

The purpose of this study was to investigate the effect of an intermittent aeration mode to reduce the membrane fouling in a submerged membrane process using the specifically devised module (YEF 750D-2). The fluid velocity on the module increased with increasing the supplied air volume, and decreased with the increment of MLSS in the biological reactor. The reduction rate of the fluid velocity was found to be $3\times10^{-4}m{\cdot}min/sec{\cdot}L$ per 1,000 mg MLSS/L increased. In the operation of the intermittent aeration, the intermitted stop of the aeration provoked the formation of a cake layer on the gel layer which was previously formed during the aeration, resulting in the highly increased TMP level. However, the TMP level could be significantly lowered by the subsequent backwashing and aeration that effectively removed the cake along with the gel layer on the membrane surface. In this study, the optimum condition for the intermittent aeration was determined to be aeration for 20 sec and pause for 20 sec.

본 연구의 목적은 침지형(YEF 750D-2) 모듈을 적용하여 공기유량에 따른 유체 유속과 간헐적인 세정공기의 공급에 의한 오염제거를 평가하는 것이다. 공기유량에 따라 모듈의 유체 유속은 선형적으로 증가하였으며, MLSS의 농도가 1,000 mg/L 증가할 때 마다 $3\times10^{-4}m{\cdot}min/sec{\cdot}L$의 비율로 유체 유속이 감소하였다. 세정공기의 공급이 정지되는 시간에 전여과가 일어나 흡인여과 시간 동안 겔층 위에 케익층이 형성되었다. 20초 정지와 20초 공기공급의 간헐공기주입으로 형성된 케익층이 역세정에 의하여 제거되면서 압력증가율이 가장 낮게 나타났다. 겔층이 제거되는 메커니즘은 세정 공기공급을 교대로 하여 겔층 위에 케익층을 형성시켜 케익층이 제거될 때 겔층이 함께 제거되는 원리로 설명할 수 있다.

Keywords

References

  1. T. Stephenson, S. Judd, B. Lefferson, and K. Brindle, Membrane Bioreactors for Wastewater Treatment, IWA Publishing, London (2001)
  2. I. S. Chang, K. H. Choo, S. H. Yoon, and C. H. Lee, 'Membrane Fouling Mechanisms in Membrane Coupled Bioreactor', Proceeding of Korea-Australia Joint Symposium, Seoul, Korea, April. 231-246 (1994)
  3. P. Schhoeberl, M. Brik, M. Bertoni, R. Braun, and W. Fuchs, 'Optimization of operational parameters for a submerged membrane bioreactor treating dyehouse wastewater', Separ. Purif. Technol., 44, 61-68 (2005) https://doi.org/10.1016/j.seppur.2004.12.004
  4. 김미희, 박진용, '제지폐수 재활용을 위 한 관형 탄소계 세라믹 한외여과장치에서 물 역세척의 막오염 제어 효과', 멤브레인, 11(4), 190-203 (2001)
  5. I. S. Chang, P. Le Clech, B. Jefferson, and S. Judd, 'Membrane fouling in membrane bioreactors for wasterwater treatment', J. Environ. Eng., 128, 1018-1029 (2000)
  6. Y. Shimizu, Y. Okuno, K. Uryu, S. Ohtsubo, and A. Watanabe, 'Filtration characteristics of hollow fiber microfiltration membrane used in membrane bioreactor for domestic wastewater treatment', Wat. Res., 30(10), 2385-2392 (1996) https://doi.org/10.1016/0043-1354(96)00153-4
  7. T. Ueda, K. Hata, Y. Kikuoka, and O. Seino, 'Effects of aeration on suction preassure in a submersed membrane bioreactor', Wat. Res., 31(3), 489-494 (1997) https://doi.org/10.1016/S0043-1354(96)00292-8
  8. S. H. Yoon and H. C. John, 'A novel flux enhancing method for membrane bioreactor(MBR) process using polymer', Desalination, 191, 52-61 (2006) https://doi.org/10.1016/j.desal.2005.04.124
  9. Y. Smizu, K. Uryu, Y. Okuno, and A. Watanabe, 'Cross-Flow Microfiltration of Activated Sludge Using Submerged Membrane with Air Bubbling', J. of Fermentation and Bioengineering, 81(1), 55-60 (1996) https://doi.org/10.1016/0922-338X(96)83120-5
  10. B. Zhang, K. Yamamoto, S. Ohgaki, and N. Kamiko, 'Floc Size Distribution and Bacterial Activates in Membrane Separation Activated Sludge Processes for Small-Scale Wastewater Treatment/Reclamation', Wat. Sci. Tech., 35(6), 37-44 (1997)
  11. A. G. Fane, Ultrafiltration : factors influencing flux and rejection. In Progress in Filtration and Separation, ed. R. J. Wakeman, vol. 4. Amsterdam: Elsevier Scientific Publishing Co. (1986)
  12. J. A. Howell and O. Velicangil, 'Theoretical considerations of membrane fouling and its treatment for protein ultrafiltration', J. Appl. Polym. Sci., 27, 21-32 (1987)
  13. A. L. Zydney and C. K. Colton, 'A concentration polarization model for the filtrate flux in cross flow microfiltration of particulate suspensions', Chem. Eng. Commun., 47, 1-21 (1986) https://doi.org/10.1080/00986448608911751
  14. V. V. Tarabara, I. Koyuncu, and M. R. Wiesner, 'Effects of hydrodynamics and solution ionic strength permeate flux in cross-flow: direct experi-mental observation of filter cake cross-sections', J. Membr. Sci., 241, 65-78 (2004) https://doi.org/10.1016/j.memsci.2004.04.030
  15. L. Song, 'Flux decline in cross flow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling', J. Membr. Sci., 139, 183-200 (1998) https://doi.org/10.1016/S0376-7388(97)00263-9
  16. J. Altmann and S. Ripperger, 'Particle deposition and layer formation at the cross flow micro-foltration', J. Membr. Sci., 124, 119-128 (1997) https://doi.org/10.1016/S0376-7388(96)00235-9
  17. 대한민국특허, 특허번호 1005353010000 (2005)
  18. 대한민국특허, 특허번호 1005770930000 (2006)