DOI QR코드

DOI QR Code

후처리 조건에 따른 탄소나노튜브 특성의 변화

Study of Carbon Nanotubes Properties by Post-treatment Conditions

  • 최성헌 (군산대학교 전자정보공학부) ;
  • 이재형 (군산대학교 전자정보공학부) ;
  • 양종석 (원광대학교 전기전자 및 정보공학부) ;
  • 박대희 (원광대학교 전기전자 및 정보공학부) ;
  • 허정구 (나노카본)
  • 발행 : 2006.10.01

초록

This paper reports a change of carbon nanotubes(CNTs) properties by post-treatment process after growth of CNTs. CNTs were treated by thermal method and solution method, and then investigated in detail using field emission scanning electron microscopy(FE-SEM), high resolution transmission scanning electron microscopy(HR-TEM), RAMAN spectroscopy, and Fourier Transform Infrared Spectrometer (FT-IR). FT-IR spectra showed that the amount of hydroxyl generated on surface of CNTs were changed with post-treatment condition. FE-SEM and TEM images were shown CNTs diameter and density variations were dependent with their treatment conditions. RAMAN spectroscopy was shown that carbon nanotubes structure vary with treatment conditions.

키워드

참고문헌

  1. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, 'Nanotube molecular wires as chemical sensors', Science, Vol. 283, p. 512, 1999 https://doi.org/10.1126/science.283.5410.1999
  2. P. G. Collins and A. Zettl, 'Unique characteristics of cold cathode carbon-nanotube-matrix field emitters', Phys. Rev. B, Vol. 55, p. 9391, 1997 https://doi.org/10.1103/PhysRevB.55.9391
  3. J.-M. Bonard, F. Maier, T. Stockli, A. Chatelain, W. A. de Heer, J.-P. Salvetat, and L. Farro, 'Field emission properties of multiwalled carbon nanotubes', Ultramicroscopy, Vol. 73, p. 7, 1998 https://doi.org/10.1016/S0304-3991(97)00129-0
  4. W. J. Jong, S. H. Lai, K. H. Hong, H. N. Lin, and H. C. Shih, 'The effect of catalysis on the formation of one-dimensional carbon structured materials', Diam. Relat. Mater., Vol. 11, p. 1019, 2002 https://doi.org/10.1016/S0925-9635(01)00551-9
  5. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, 'Atomic structure. and electronic properties of single-walled carbon', Nature, Vol. 388, p. 756, 1997 https://doi.org/10.1038/41972
  6. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, 'Science of Fullerenesand Carbon Nanotubes', Academic Press, New York, Chap. 19, 1996
  7. Y. Ouyang and Y. Fang, 'Temperature dependence of the raman spectra of carbon nanotubes with 1064 nm excitation', Physica, Vol. E 24, p. 222, 2004
  8. W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu, and S. Xie, 'Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor', Appl, Phys. Lett., Vol. 70, p. 2684, 1997
  9. F. Tuinstra and J. L. Koenig, 'Raman spectrum of graphite', J Chem. Phys., Vol. 53, p. 1126, 1970
  10. D. S. McCulloch, S. Prawer, and A Hoffman, 'Structural investigation of xenon-ion-beam-irradiated glassy carbon', Phys. Rev. B, Vol. 50, p. 5905, 1994 https://doi.org/10.1103/PhysRevB.50.5905
  11. Luo H., Shi Z., Li N., Gu S., and Zhuang Q., 'Investigation of the electrochemical and electrocatalytic behavior of single carbon nanotube film on a glassy carbon electrode', Anal. Chem., Vol. 73, p. 915, 2001
  12. Chen J., Hamon M. A, Hu H., Chen Y, Rao A. M., and Eklund P. C., 'Solution properties of singlewalled carbon nanotubes', Science, Vol. 282, No.8, p. 95, 1998 https://doi.org/10.1126/science.282.5396.1998