A method for Character Segmentation using Frequence Characteristics and Back Propagation Neural Network

주파수 특성과 역전파 신경망 알고리즘을 이용한 문자 영역 분할 방법

  • 전병태 (국립 한경대학교 웹정보공학과) ;
  • 송치양 (국립 상주대학교 소프트웨어공학과)
  • Published : 2006.09.01

Abstract

The proposed method uses FFT(Fast Fourier Transform) and neural networks in order to extract texts in real time. In general, text areas are found in the higher frequency domain, thus, can be characterized using FFT. The neural network are learned by character region(high frequency) and non character region(low frequency). The candidate text areas can be thus found by applying the higher frequency characteristics to neural network. Therefore, the final text area is extracted by verifying the candidate areas. Experimental results show a perfect candidate extraction rate and about 95% text extraction rate. The strength of the proposed algorithm is its simplicity, real-time processing by not processing the entire image.

문자 영역 추출을 위해서 FFT와 신경망을 이용한 방법을 본 논문에서 제안하고자 한다. 일반적으로 문자 영역은 고주파 영역에서 발견되므로 FFT를 이용하여 이 특징을 추출할 수 있다. 문자(고 주파) 영역과 비 문자(저 주파) 영역을 신경망에 학습을 시킨다. 신경망에 고주파 영역을 입력으로써 후보 영역을 추출한다. 그리고 최종 문자 영역은 후보 영역 검증을 통하여 추출된다. 실험 결과 후보 영역 추출은 학습된 경우 100% 추출율을 보여주고 있으며, 검증을 통한 후보 영역 추출율은 95%임을 알 수 있었다. 제안된 알고리즘의 장점은 알고리즘의 단순성과 실시간 처리에 있다.

Keywords