The Role of Organic Matter and Black Carbon on the Cycling of Persistent Organic Pollutants (POPs)

POPs의 순환에 미치는 유기물 및 black carbon의 역할

  • Nam Jae-Jak (National Institute of Agricultural Science and Technology) ;
  • Hong Suk-Young (National Institute of Agricultural Science and Technology) ;
  • Kim Kye-Hoon (Department of Environmental Horticulture, University of Seoul)
  • 남재작 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 홍석영 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 김계훈 (서울시립대학교 자연과학대학 환경원예학과)
  • Published : 2006.09.01

Abstract

Soil organic matter (OM) is well documented for its capacity to retain persistent organic pollutants (POPs) and thus is important in dictating the environmental partitioning of POPs between media such as air, water, and soil. Black carbon (BC) is a small component of OM and exhibitt a 10$\sim$100 times greater sorption capacity of POPs than humified OM. Furthermore, due to the inherent long environmental life time of BC, a result of its resistance to physical and biological degradation, POPs can continue to accumulate in BC over a long period of time. The unique properties of BC have been of particular interest over the last 30 years and have resulted in broad research being conducted into its effects of POP cycling in atmospheric, oceanographic and soil matrices. The results of such studies have proved valuable In providing new research initiatives into the role of BC in the cycling of hydrophobic organic compounds (HOCs) as well as giving further insight into the long range atmospheric transport (LRAT) potential and subsequent risk assessment criteria for persistent organic pollutants (POPs). In this report, we introduce a novel study examining the relationships between BC and OM with respect to their POP sorption capacity and discuss the role of BC in influencing the environmental regulation of organic pollutants.

Keywords

References

  1. Accardi-Dey A and Gschwend PM. Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments, Environ Sci Technol 2002; 36: 21-29 https://doi.org/10.1021/es010953c
  2. Accardi Dey A and Gschwend PM. Reinterpreting literature sorption data considering both absorption into and adsorption onto black carbon, Environ Sci Technol 2003; 37: 99 https://doi.org/10.1021/es020569v
  3. Alexander M. How Toxic Are Toxic-Chemicals in Soil, Environ Sci Technol 1995; 29: 2713-2717 https://doi.org/10.1021/es00011a003
  4. Alexander M. Aging, bioavailability, and overestimation of risk from environmental pollutants, Environ Sci Technol 2000; 34: 4259-4265 https://doi.org/10.1021/es001069+
  5. Barber JL, Sweetman AJ, von Wijk D and Jones KC. Hexachlorobenzene in global environment: Emissions, levels, distribution, trends and processes, Science of the Total Environment 2005; 349: 1-44 https://doi.org/10.1016/j.scitotenv.2005.03.014
  6. Batjes NH. Total carbon and nitrogen in the soils of the world, Eur J Soil Sci 1996; 47: 151-163 https://doi.org/10.1111/j.1365-2389.1996.tb01386.x
  7. Bergin MH, Greenwald R, Xu J, Berta Y and Chameides WL. Influence of aerosol dry deposition on photosynthetically active radiation available to plants: A case study in the Yangtze delta region of China, Geophysical Research Letters 2001; 28: 3605-3608 https://doi.org/10.1029/2001GL013461
  8. Beyer A, Mackay D, Matthies M, Wania F and Webster E. Assessing long-range transport potential of persistent organic pollutants, Environ Sci Technol 2000; 34: 699-703 https://doi.org/10.1021/es990207w
  9. Bucheli TD, Blum F, Desaules A and Gustafsson O. Polycyclic aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland, Chemosphere 2004; 56: 1061-1076 https://doi.org/10.1016/j.chemosphere.2004.06.002
  10. Bucheli TD and Gustafasson O. Quantification of the sootwater distribution coefficient of PAHs provides mechanistic basis for enhanced sorption observations, Environ Sci Technol 2000; 34: 5144-5151 https://doi.org/10.1021/es000092s
  11. Bucheli TD and Gustafsson O. Ubiquitous observations of enhanced solid affinities for aromatic organochlorines in field situations: Are in situ dissolved exposures overestimated by existing partitioning models?, Environmental Toxicology and Chemistry 2001; 20: 1450-1456 https://doi.org/10.1897/1551-5028(2001)020<1450:UOOESA>2.0.CO;2
  12. Burgess RM and Lohmann R. Role of black carbon in the partitioning and bioavailbility of organic pollutants, Environmental Toxicology and Chemistry 2004; 23: 2531-2533 https://doi.org/10.1897/03-34
  13. Carcaillet C, Almquist H, Bradshaw RHW, Carrion JS, Gaillard M-J, Gajewski K, Haas JN, Haberle SG, Hadorn P, Muller SD, Richard PJH, Richoz I, Rosch M, Sanchez Goni MF, von Stedingk H, Stevenson AC, Talon B, Tardy C, Tinner W, Tryterud E, Wick L and Willis KJ. Holocene biomass burning and global dynamics of the carbon cycle, Chemosphere 2002; 49: 845-863 https://doi.org/10.1016/S0045-6535(02)00385-5
  14. Chameides WL, Yu H, Liu SC, Bergin M, Zhou X, Mearns L, Wang G, Kiang CS, Saylor RD, Luo C, Huang Y, Steiner A and Giorgi F. Case study of the effects of atmospheric aerosols and regional haze on agriculture: An opportunity to enhance crop yields in China through emission controls?, P Natl Acad Sci USA 1999; 96: 13626-13633
  15. Chiou CT and Kile DE. Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations, Environ Sci Technol 1998; 32: 338-343 https://doi.org/10.1021/es970608g
  16. Chiou CT, Peters LJ and Freed VH. Physical Concept of Soil-Water Equilibria for Non-Ionic Organic-Compounds, Science 1979; 206: 831-832 https://doi.org/10.1126/science.206.4420.831
  17. Chung N and Alexander M. Effect of concentration on sequestration and bioavailability of two polycyclic aromatic hydrocarbons, Environ Sci Technol 1999; 33: 3605-3608 https://doi.org/10.1021/es9902874
  18. Chung N and Alexander M. Effect of soil properties on bioavailability and extractability of phenanthrene and atrizine sequestered in soil, Chemosphere 2002; 48: 109-115 https://doi.org/10.1016/S0045-6535(02)00045-0
  19. Cochrane MA. Fire science for rainforests, Nature 2003; 421: 913-919 https://doi.org/10.1038/nature01437
  20. Cornelissen G, Elmquist M, Groth I and Gustafasson O. Effect of sorbate planarity on environmental black carbon sorption, Environ Sci Technol 2004; 38: 3574-3580 https://doi.org/10.1021/es049862g
  21. Cornelissen G, Gustafasson O, Bucheli TD, Jonker MTO, Koelmans AA and van Noort PCM. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation, Environ Sci Technol 2005a; 39: 6881-6895 https://doi.org/10.1021/es050191b
  22. Cornelissen G and Gustafsson O. Sorption of phenanthrene to environmental black carbon in sediment with and without organic matter and native sorbates, Environ Sci Technol 2004; 38: 148-155 https://doi.org/10.1021/es034776m
  23. Cornelissen G and Gustafsson O. Prediction of large variation in biota to sediment accumulation factors due to concentration-dependent black carbon adsorption of planar hydrophobic organic compounds, Environmental Toxicology and Chemistry 2005; 24: 495-498 https://doi.org/10.1897/04-152R.1
  24. Cornelissen G, Haftka J, Parsons J and Gustafasson O. Sorption to black carbon of organic compounds ith varying polarity and planarity, Environ Sci Technol 2005b; 39: 3688-3694 https://doi.org/10.1021/es048346n
  25. Cornelissen G, Rigterink H, Ferdinandy MMA and van Noort PCM. Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation, Environ Sci Technol 1998; 32: 966-970 https://doi.org/10.1021/es9704038
  26. Cornelissen G, van der Pal M, van Noort PCM and Govers HAJ. Competitive effects on the slow desorption of organic compounds from sediments, Chemosphere 1999; 39: 1971-1981 https://doi.org/10.1016/S0045-6535(99)00079-X
  27. Cousins IT, Gevao B and Jones KC. Measuring and modelling the vertical distribution of semivolatile organic compounds in soils. I: PCB and PAH soil core data, Chemosphere 1999a; 39: 2507-2518 https://doi.org/10.1016/S0045-6535(99)00164-2
  28. Cousins IT, Mackay D and Jones KC. Measuring and modelling the vertical distribution of semivolatile organic compounds in soils. II: Model development, Chemosphere 1999b; 39: 2519-2534 https://doi.org/10.1016/S0045-6535(99)00165-4
  29. Dickens AF, Gelinas Y, Masiello CA, Wakeham S and Hedges JJ. Reburial of fossil organic carbon in marine sediments, Nature 2004; 427: 336-339 https://doi.org/10.1038/nature02299
  30. Ehlers LJ and Luthy RG. Contaminant bioavailability in soil and sediment, Environ Sci Technol 2003; 37: 295A-302A https://doi.org/10.1021/es032524f
  31. Fernandes MB, Skjemstad JO, Johnson BB, Wells JD and Brooks P. Characterization of carbonaceous combustion residues. Morphological, elemental and spectroscopic features, Chemosphere 2003; 51: 785-795 https://doi.org/10.1016/S0045-6535(03)00098-5
  32. Fu MH, Mayton H and Alexander M. Desorption and Biodegradation of Sorbed Styrene in Soil and Aquifer Solids, Environmental Toxicology and Chemistry 1994; 13: 749-753 https://doi.org/10.1897/1552-8618(1994)13[749:DABOSS]2.0.CO;2
  33. Ghosh U, Zimmerman JR and Luthy RG. PCB and PAH speciation among particle types in contaminated harbor sediments and effects on PAH bioavailability, Environ Sci Technol 2003; 37: 2209-2217 https://doi.org/10.1021/es020833k
  34. Glaser B, Haumaier L, Guggenberger G and Zech W. Blackcarbon in soils: the use of benzenecarboxylic acids as specific markers, Organic Geochemistry 1998; 29: 811-819 https://doi.org/10.1016/S0146-6380(98)00194-6
  35. Glaser B, Haumaier L, Guggenberger G and Zech W. Black carbon in Terra Preta and Oxisols of the Brazilian Amazon as estimated by benzenecarboxylic acids as specific markers, Abstracts of Papers of the American Chemical Society 1999; 217: U829-U829
  36. Goldberg ED 1985. Black carbon in the environment: Properties and distribution. John Wiley & Sons, New York
  37. Gonzalez-Perez JA, Gonzalez-Vila FJ, Almendros G and Kinicker H. The effect of fire on soil organic matter-a review, Environment International 2004; 30: 855-870 https://doi.org/10.1016/j.envint.2004.02.003
  38. Grathwohl P. Influence of Organic-Matter from Soils and Sediments from Various Origins on the Sorption of Some Chlorinated Aliphatic-Hydrocarbons-Implications on Koc Correlations, Environ Sci Technol 1990; 24: 1687-1693 https://doi.org/10.1021/es00081a010
  39. Grathwohl P and Kleineidam S. Equilibrium sorption of organic compounds in different types of organic matter: Pore filling vs. partitioning, Abstracts of Papers of the American Chemical Society 2000; 220: U316-U316
  40. Griffin JJ and Goldberg ED. Impact of fossile fuel combustion on sediments of Lake Michigan: a reprise, Environ Sci Technol 1983; 17: 244-245 https://doi.org/10.1021/es00110a013
  41. Gustafasson O and Gschwend PM. The Flux of black carbon to surface sediments on the New England continental shelf, Geochim Cosmochim Acta 1998; 62: 465 https://doi.org/10.1016/S0016-7037(97)00370-0
  42. Gustafasson O, Haghseta F, Chan C, Macfarlane J and Gschwend PM. Quantification of the dilute sedimentary soot phase: Implication for PAH specification and bioavailability, Environ Sci Technol 1997; 31: 203-209 https://doi.org/10.1021/es960317s
  43. Gustafsson O and Gschwend PM. Soot as a strong partition medium for polycyclic aromatic hydrocarbons in aquatic systems, Molecular Markers in Environmental Geochemistry 1997; pp. 365-381
  44. Gustafsson O and Gschwend PM. The Flux of black carbon to surface sediments on the New England continental shelf, Geochim Cosmochim Acta 1998; 62: 465 https://doi.org/10.1016/S0016-7037(97)00370-0
  45. Gustafsson O, Haghseta F, Chan C, Macfarlane J and Gschwend PM. Quantification of the dilute sedimentary soot phase: Implication for PAH specification and bioavailability, Environ Sci Technol 1997; 31: 203-209 https://doi.org/10.1021/es960317s
  46. Haumaier L and Zech W. Black carbon-possible source of highly aromatic components of soil humic acids, Organic Geochemistry 1995; 23: 191-196 https://doi.org/10.1016/0146-6380(95)00003-W
  47. Herbert BMJ, Halsall CJ, Jones KC and Kallenborn R. Field investigation into the diffusion of semi-volatile organic compounds into fresh and aged snow Atmospheric Environment 2006; 40: 1385-1393 https://doi.org/10.1016/j.atmosenv.2005.10.055
  48. Hong L, Ghosh U, Mahajan T, Zare RN and Luthy RG. PAH sorption mechanism and partitioning behavior in lampblack-impacted soils from former oil-gas plant sites, Environ Sci Technol 2003; 37: 3625-3634 https://doi.org/10.1021/es0262683
  49. Huang WL, Ping PA, Yu ZQ and Fu HM. Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments, Applied Geochemistry 2003; 18: 955-972 https://doi.org/10.1016/S0883-2927(02)00205-6
  50. Huang WL, Schlautman MA and Weber WJ. A distributed reactivity model for sorption by soils and sediments .5. The influence of near-surface characteristics in mineral domains , Environ Sci Technol 1996; 30: 3650-3650
  51. Huang WL and Weber WJ. A distributed reactivity model for sorption by soils and sediments. II. Slow concentration dependent sorption rates, Environ Sci Technol 1998; 32: 3549-3555 https://doi.org/10.1021/es970764n
  52. Huang WL and Weber WJ. A distributed reactivity model for sorption by soils and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains, Environ Sci Technol 1999; 33: 972-972 https://doi.org/10.1021/es982020v
  53. Huang WL, Young TM, Schlautman MA, Yu H and Weber WJ. A distributed reactivity model for sorption by soils and sediments. 9. General isotherm nonlinearity and applicability of the dual reactive domain model, Environ Sci Technol 1997; 31: 1703-1710 https://doi.org/10.1021/es960677f
  54. Jager T, Baerselman R, Dijkman E, De Groot AC, Hogendoorn EA, De Jong A, Kruitbosch JAW and Peijnenburg W. Availability of polycyclic aromatic hydrocarbons to earthworms (Eisenia andrei, Oligochaeta) in field-polluted soils and soil-sediment mixtures, Environmental Toxicology and Chemistry 2003; 22: 767-775 https://doi.org/10.1897/1551-5028(2003)022<0767:AOPAHT>2.0.CO;2
  55. Jaward FM, Zhang G, Nam JJ, Sweetman AJ, Obbard JP, Kobara Y and Jones KC. Passive air sampling of polychlorinated biphenyls, organochlorine compounds, and polybrominated diphenyl ethers across Asia, Environ Sci Technol 2005; 39: 8638-8645 https://doi.org/10.1021/es051382h
  56. Jones KC. Polychlorinated-Biphenyls in Welsh Soils-a Survey of Typical Levels, Chemosphere 1989; 18: 1665-1672 https://doi.org/10.1016/0045-6535(89)90056-8
  57. Jones KC, Stratford JA, Waterhouse KS and Vogt NB. Organic Contaminants in Welsh Soils-Polynuclear Aromatic-Hydrocarbons, Environ Sci Technol 1989; 23: 540-550 https://doi.org/10.1021/es00063a005
  58. Jones KC, Stratford JA, Waterhouse KS and Vogt NB. Organic Contaminants in Welsh Soils-Polynuclear Aromatic-Hydrocarbons, Environ Sci Technol 1989; 23: 540-550 https://doi.org/10.1021/es00063a005
  59. Jonker MTO and Koelmans AA. Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment. Mechanistic consideration, Environ Sci Technol 2002; 36: 3725-3734 https://doi.org/10.1021/es020019x
  60. Kan AT, Fu G, Hunter M, Chen W, Ward CH and Tomson MB. Irreversible sorption of neutral hydrocarbons to sediments: Experimental observations and model predictions, 1998; 32: 892-902 https://doi.org/10.1021/es9705809
  61. Karapanagioti HK, Kleinedam S, Sabatini DA, Grathwohl P and Ligouis B. Impacts of heterogeneous organic matter on phenanthrene sorption: equilibrium and kinetic studies with acquifer material, Environ Sci Technol 2000a; 34: 406-414 https://doi.org/10.1021/es9902219
  62. Karickhoff SW. Sorption kinetics of HOCs in natural sediments. Ann Arbor Press, MI. 1980
  63. Karickhoff SW. On the Sorption of Neutral Organic Solutes in Soils, Journal of Agricultural and Food Chemistry 1981a; 29: 424-425 https://doi.org/10.1021/jf00104a053
  64. Karickhoff SW. Semiempirical Estimation of Sorption of Hydrophobic Pollutants on Natural Sediments and Soils, Chemosphere 1981b; 10: 833-846 https://doi.org/10.1016/0045-6535(81)90083-7
  65. Karickhoff SW. Sorption Kinetics of Hydrophobic Pollutants in Natural Sediments, Abstracts of Papers of the American Chemical Society 1983; 186: 65-ENVR
  66. Karickhoff SW. Organic Pollutant Sorption in Aquatic Systems, Journal of Hydraulic Engineering-Asce 1984; 110: 707-735 https://doi.org/10.1061/(ASCE)0733-9429(1984)110:6(707)
  67. Karickhoff SW and Morris KR. Sorption Dynamics of Hydrophobic Pollutants in Sediment Suspensions, Environmental Toxicology and Chemistry 1985; 4: 469-479 https://doi.org/10.1897/1552-8618(1985)4[469:SDOHPI]2.0.CO;2
  68. Kelsey JW, Kottler BD and Alexander M. Selective chemical extractants to predict bioavailability of soil-aged organic chemicals, Environ Sci Technol 1997; 31: 214-217 https://doi.org/10.1021/es960354j
  69. Klecka G, Boethling B, Franklin J, Graham G, Grady L, Howard P, Kannan K, Larson R, Mackay D, Muir D and van de Meent D 2000. Evaluation of persistence and long-range transport of organic chemical in the environment. Society of Environmental Toxicology and Chemistry, Pensacola, FL
  70. Kleineidam S, Rugner H, Ligouis B and Grathwohl P. Organic matter facies and equilibrium sorption of phenanthrene, Environ Sci Technol 1999; 33: 1637-1644 https://doi.org/10.1021/es9806635
  71. Kleineidam S, Schuth C and Grathwohl P. Solubility-normalized combined adsorption-partitioning sorption isotherms for organic pollutants, Environ Sci Technol 2002; 36: 4689-4697 https://doi.org/10.1021/es010293b
  72. Koelmans AA, Jonker MTO, Cornelissen G, Bucheli TD, Van Noort PCM and Gustafasson O. Black carbon: The reverse of its dark side, Chemosphere 2006; 63: 365-377 https://doi.org/10.1016/j.chemosphere.2005.08.034
  73. Lambert SM. Omega, a useful index of soil sorption equilibria, J Agric Food Chem 1968; 16: 340-343 https://doi.org/10.1021/jf60156a038
  74. Loehr RC and Webster MT. Behavior of fresh vs. aged chemicals in soil, Journal of Soil Contamination 1996; 5: 361-383 https://doi.org/10.1080/15320389609383535
  75. Lohmann R, Macfarlane JK and Gschwend PM. Importance of blcak carbon to sorption of native PAHs, PCBs, and PCDDs in Boston and New York harbor sediments, Environ Sci Technol 2005; 39: 141-148 https://doi.org/10.1021/es049424+
  76. Luthy RG, Aiken GR, Brusseau ML, Cunningham SD, Gschwend PM, Pignatello JJ, Reinhard M, Traina SJ, Weber WJ and Westall JC. Sequestration of hydrophobic organic contaminants by geosorbents, Environ Sci Technol 1997; 31: 3341-3347 https://doi.org/10.1021/es970512m
  77. Maruya KA, Risebrough RW and Horne AJ. Partitioning of polynuclear aromatic hydrocarbons between sediments from San Francisco Bay and their porewaters, Environ Sci Technol 1996; 30: 2942-2947 https://doi.org/10.1021/es950909v
  78. Meijer SN, Ockenden WA, Sweetman AJ, Breivik K, Grimalt JO and Jones KC. Global Distribution and Budget of PCBs and HCB in Background Surface Soils: Implications for Sources and Environmental Processes Environ Sci Technol 2003; 37: 667-672 https://doi.org/10.1021/es025809l
  79. Middelburg JJ, Nieuwenhuize K and von Breugel P. Black carbon in marine sediments, Mar Chem 1999; 65: 245 https://doi.org/10.1016/S0304-4203(99)00005-5
  80. Naes K, Axelman J, Naf C and Broman D. Role of soot carbon and other carbon matrices in the distribution of PAHs among particles, DOC, and the dissolved phase in the effluent and recipient waters of an aluminum reduction plant, Environ Sci Technol 1998; 32: 1786-1792 https://doi.org/10.1021/es9708732
  81. Novakov T and Hansen JE. Black carbon emission in the United Kingdom during the past four decades: an empirical analysis, Atmospheric Environment 2004; 38: 4155-4163 https://doi.org/10.1016/j.atmosenv.2004.04.031
  82. Paine MD, Chapman PM, Allard PJ, Murdoch MH and Minifie D. Limited bioavailability of sediment PAH near an aluminum smelter: Contamination does not equal effects, Environmental Toxicology and Chemistry 1996; 15: 2003-2018 https://doi.org/10.1897/1551-5028(1996)015<2003:LBOSPN>2.3.CO;2
  83. Persson NJ, Gustafsson O, Bucheli TD, Ishaq R, Naes K and Broman D. Soot-carbon influenced distribution of PCDD/Fs in the marine environment of the Grenlandsfjords, Norway, Environ Sci Technol 2002; 36: 4968-4974 https://doi.org/10.1021/es020072l
  84. Pignatello JJ and Xing BS. Mechanisms of slow sorption of organic chemicals to natural particles, Environ Sci Technol 1996; 30: 1-11 https://doi.org/10.1021/es940683g
  85. Ponomarenko EV and Anderson DW. Importance of charred organic matter in Black Chernozem soils of Saskatchewan, Canadian Journal of Soil Science 2001; 81: 285-297 https://doi.org/10.4141/S00-075
  86. Post WM, Peng TH, Emanuel WR, King AW, Dale WH and De Angelis DL. The global carbon cycle, Am Sci 1990; 78: 310-326
  87. Prentice IC, Farquhar GD, Fasham MJ, Goulden ML, Heimann M and Jaramillo VJ. The carbon cycle and atmospheric carbon dioxide. Cambridge Univ. Press, Cambridge. 1998
  88. Ribes S, van Drooge B, Dachs J, Gustafsson O and Grimalt JO. Influence of Soot Carbon on the Soil-Air Partitioning of Polycyclic Aromatic Hydrocarbons Environ Sci Technol 2003; 37: 2675-2680 https://doi.org/10.1021/es0201449
  89. Rockne KJ, Taghon GL and Kosson DS. Pore structure of soot deposits from several combustion sources, Chemosphere 2002; 41: 1125-1135 https://doi.org/10.1016/S0045-6535(00)00040-0
  90. Sakai S, Hiraoka M, Takeda N and Shiozaki K. Coplanar PCBs and PCDDs/PCDFs in municipal waste incineration, Chemosphere 1993; 27: 233-240 https://doi.org/10.1016/0045-6535(93)90297-I
  91. Sander M and Pignatello JJ. Characterization of charcoal adsorption sites for aromatic compounds: insights drawn from single-solute and bi-solute competitive experiments, Environ Sci Technol 2005; 39: 1606-1615 https://doi.org/10.1021/es049135l
  92. Schmidt MWI, Skjemstad JO, Ghert E and Kogel-Knabner I. Charred organic carbon in German chernozemic soils, Eur J Soil Sci 1999; 50: 351-365 https://doi.org/10.1046/j.1365-2389.1999.00236.x
  93. Seiler W and Crutzen PJ. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning, Clim Change 1980; 2: 207-247 https://doi.org/10.1007/BF00137988
  94. Sundelin B, Wiklund AKE, Lithner G and Gustafsson O. Evaluation of the role of black carbon in attenuating bioaccumulation of polycyclic aromatic hydrocarbons from field-contaminated sediments, Environmental Toxicology and Chemistry 2004; 23: 2611-2617 https://doi.org/10.1897/03-359
  95. Tang JX, Robertson BK and Alexander M. Chemicalextraction methods to estimate bioavailability of DDT, DDE, and DDD in soil, Environ Sci Technol 1999; 33: 4346-4351 https://doi.org/10.1021/es990581w
  96. Tate RL. Soil organic matter. Biological and ecological effects. Wiley, New York, 1987
  97. Thomann RV and Komlos J. Model of biota-sediment accumulation factor for polycyclic aromatic hydrocarbons, Environmental Toxicology and Chemistry 1999; 18: 1060-1068 https://doi.org/10.1897/1551-5028(1999)018<1060:MOBSAF>2.3.CO;2
  98. Weber WJ, Kim SH and Johnson MD. Distributed reactivity model for sorption by soils and sediments. 15. Highconcentration co-contaminant effects on phenanthrene sorption and Desorption, Environ Sci Technol 2002; 36: 3625-3634 https://doi.org/10.1021/es020557+
  99. Weber WJ, McGinley PM and Katz LE. A Distributed Reactivity Model for Sorption by Soils and Sediments. 1. Conceptual Basis and Equilibrium Assessments, Environ Sci Technol 1992; 26: 1955-1962 https://doi.org/10.1021/es00034a012
  100. Weber WJ and Young TM. A distributed reactivity model for sorption by soils and sediments. 6. Mechanistic implications of desorption under supercritical fluid conditions, Environ Sci Technol 1997; 31: 1686-1691 https://doi.org/10.1021/es9605681
  101. White JC and Alexander M. Reduced biodegradability of desorption-resistant fractions of polycyclic aromatic hydrocarbons in soil and aquifer solids, Environmental Toxicology and Chemistry 1996; 15: 1973-1978 https://doi.org/10.1897/1551-5028(1996)015<1973:RBODRF>2.3.CO;2
  102. White JC, Kelsey JW, Hatzinger PB and Alexander M. Factors affecting sequestration and bioavailability of phenanthrene in soils, Environmental Toxicology and Chemistry 1997; 16: 2040-2045 https://doi.org/10.1897/1551-5028(1997)016<2040:FASABO>2.3.CO;2
  103. Wilcke W and Amelung W. Persistent organic pollutants in native grassland soils along a climosequence in North America, Soil Science Society of America Journal 2000; 64: 2140-2148 https://doi.org/10.2136/sssaj2000.6462140x
  104. Wilcke W, Amelung W and Zech W. Heavy metals and polycyclic aromatic hydrocarbons (PAHs) in a rural community leewards of a waste incineration plant, Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 1997; 160: 369-378 https://doi.org/10.1002/jpln.19971600305
  105. Xia GS and Ball WP. Adsorption-partitioning uptake of nine low-polarity organic chemicals on a natural sorbent, Environ Sci Technol 1999; 33: 262-269 https://doi.org/10.1021/es980581g
  106. Yasuhara A, Katami T and Shibamoto T. Formation of PCDDs, PCDFs, and Coplanar PCBs from Incineration of Various Woods in the Presence of Chlorides, Environ Sci Technol 2003; 37: 1563-1567 https://doi.org/10.1021/es020948o
  107. Young TM and Weber WJ. A Distributed Reactivity Model for Sorption by Soils and Sediments. 3. Effects of Diagenetic Processes on Sorption Energetics, Environ Sci Technol 1995; 29: 92-97 https://doi.org/10.1021/es00001a011