DOI QR코드

DOI QR Code

네 가지 형태의 비우식성 치경부 병소의 3차원 유한요소법적 응력분석

Effects of occlusal load on the stress distribution of four cavity configurations of noncarious cervical lesions: A three-dimensional finite element analysis study

  • 전상제 (부산대학교 치과대학 치과보존학교실) ;
  • 박정길 (부산대학교 치과대학 치과보존학교실) ;
  • 김현철 (부산대학교 치과대학 치과보존학교실) ;
  • 우성관 (부산대학교 공과대학 기계설계공학과) ;
  • 김광훈 (부산대학교 공과대학 기계설계공학과) ;
  • 손권 (부산대학교 공과대학 기계설계공학과) ;
  • 허복 (부산대학교 치과대학 치과보존학교실)
  • Jeon, Sang-Je (Department of Conservative Dentistry, College of Dentistry, Pusan National University) ;
  • Park, Jeong-Kil (Department of Conservative Dentistry, College of Dentistry, Pusan National University) ;
  • Kim, Hyeon-Cheol (Department of Conservative Dentistry, College of Dentistry, Pusan National University) ;
  • Woo, Sung-Gwan (Department of Mechanical design engineering, College of Engineering, Pusan National University) ;
  • Kim, Kwang-Hoon (Department of Mechanical design engineering, College of Engineering, Pusan National University) ;
  • Son, Kwon (Department of Mechanical design engineering, College of Engineering, Pusan National University) ;
  • Hur, Bock (Department of Conservative Dentistry, College of Dentistry, Pusan National University)
  • 발행 : 2006.09.01

초록

본 연구의 목적은 네 가지 형태의 비우식성 치경부 병소에 과다한 교합하중을 가했을 때 각 와동에 나타나는 응력 분포를 3차원적으로 조사하고자 하였다. 임상적으로 많이 관찰되는 다양한 형태의 병소 중 4가지 형태의 서로 다른 병소를 대표적으로 선택하여 발치된 상악 제2소구치에 3차원 유한요소 모형을 제작하였다. 형성된 모형에 협측교두와 설측교두에 500 N의 하중을 가한 후 치경부병소 첨부와 수직 절단면의 주 응력을 분석하여 다음과 같은 결과를 얻었다. 1 서로 다른 네 가지 형태의 와동에서 응력분포 양상은 비슷했지만 응력의 크기가 서로 달랐다. 2. 최대치 응력은 근심협측 우각부에서 나타났으며, 또한 병소의 첨부에 응력의 집중을 보였다. 3. 하중 A에서는 주된 응력이 압축 응력이었고 하중 B에서는 주된 응력이 인장 응력이었다. 4. 이러한 하중 하에서 수복치료를 하지 않으면 와동의 크기는 점차 커지고 치아구조에는 유해하게 작용하리라 생각된다.

The objective of this study was to investigate the effect of excessive occlusal loading on stress distribution on four type of cervical lesion, using a three dimensional finite element analysis (3D FEA). The extracted maxillary second premolar was scanned serially with Micro-CT. The 3D images were processed by 3D-DOCTOR. ANSYS was used to mesh and analyze 3D FE model. Four different lesion configurations representative of the various types observed clinically for teeth were studied. A static point load of 500N was applied to the buccal and lingual cusp (Load A and B). The principal stresses in lesion apex, and vertical sectioned margin of cervical wall were analyzed. The results were as follows 1. The patterns of stress distribution were similar but the magnitude was different in four types of lesion 2. The peak stress was observed at mesial corner and also stresses concentrated at lesion apex. 3. The compressive stress under load A and the tensile stress under load B were dominant stress. 4. Under the load, lesion can be increased and harmful to tooth structure unless restored.

키워드

참고문헌

  1. James D, Linda C, Levitch. How dentists classified and treated non-carious cervical lesions. J Am Dent Assoc 124(5):46-54, 1993 https://doi.org/10.14219/jada.archive.1993.0112
  2. Bradley T, William B, Hancock. Examining the prevalence and characteristics of abfraction like cervical lesions in a population of U.S. veterans. J Am Dent Assoc 132(12):1694-1701, 2001 https://doi.org/10.14219/jada.archive.2001.0122
  3. Lee WC, Eakle WS. Stress-induced cervical lesions: Review of advances on the past 10 years. J Prosthet Dent 75:487-494, 1996 https://doi.org/10.1016/S0022-3913(96)90451-5
  4. Grippo JO. Abfractions: A new classification of hard tissue lesions of teeth. J Esthet Dent 3(1):14-19, 1991 https://doi.org/10.1111/j.1708-8240.1991.tb00799.x
  5. Gallien GS, Kaplan I, Owen BM. A review of noncarious dental cervical lesions. Compend Contin Educ Dent 15(11):1366-1372, 1994
  6. Grippo JO, Schreiner S. Attrition, abrasion, corrosion and abfraction revisited-A new perspective on tooth surface lesion. J Am Dent Assoc 135(8):1109-1117, 2004 https://doi.org/10.14219/jada.archive.2004.0369
  7. Rees JS, Hammadeh M. Undermining of enamel as a mechanism of abfraction lesion formation: a finite element study. Eur J Oral Sci 112:347-352, 2004 https://doi.org/10.1111/j.1600-0722.2004.00143.x
  8. Radentz WH, Barnes GP, Cutright DE. A survey of factors possibly associated with cervical abrasion of tooth surface. J Periodontol 47:148-154, 1976 https://doi.org/10.1902/jop.1976.47.3.148
  9. Kahn F, Young WG, Shahabi S, Daley TJ. Dental cervical lesions associated with occlusal erosion and attrition. Aust Dent J 44:176-186, 1999 https://doi.org/10.1111/j.1834-7819.1999.tb00219.x
  10. Levitch LC, Bader JD, Shugars DA, Heymann HO. Non-carious cervical lesions. J Dent 22:195-207, 1994 https://doi.org/10.1016/0300-5712(94)90107-4
  11. Leinfelder KF, Restoration of abfracted lesions. Compend Contin Educ Dent 15(4):1396-1400, 1994
  12. Park Jk, Hur B, Lee HJ The effect of configuration on marginal leakage of class 5 restoration. J Kor Acad Cons Dent 26(2):162-170, 2001
  13. Kuroe T, Itoh H, Caputo AA, Konuma M. Biomechanics of cervical tooth structure lesions and their restoration. Quint Int 31(4):267-274, 2000
  14. Grippo JO. Noncarious cervical lesions: The decision to ignore or restore. J Esthet Dent 4:118-132, 1992
  15. Litonjua LA, Andreana S, Patra AK, Cohen RE. An assessment of stress analyses in the theory of abfraction Biomed Mater Eng 14:311-321, 2004
  16. Rees JS, Jacobsen PH. The effect of cuspal flexure on a buccal Class V restoration: a finite element study. J Dent 26(4):361-367, 1998 https://doi.org/10.1016/S0300-5712(97)00015-8
  17. Lindehe J, Karring T. Textbook of Clinical Periodontology, 2nd edition, Munksgaard, Copenhagen, p19-69, 1989
  18. Schroeder HE, Page RC. Periodontal Diseases, 2nd edition, Lea & Fabiger, Philadelphia, p 3-52, 1990
  19. Rubin C, Krishnamurthy N, Capilouto E, Yi H. Stress analysis of the human tooth using a three-dimensional finite element model. J Dent Res 62:82-86, 1983 https://doi.org/10.1177/00220345830620021701
  20. Katona TR, Winkler MM. Stress analysis of a bulkfilled class V light-cured composite restoration. J Dent Res 73(8):1470-1477, 1994 https://doi.org/10.1177/00220345940730081201
  21. Geramy A, Sharafoddin F. Abfraction: 3D analysis by means of the finite method. Quint Int 34(7):526-533, 2003
  22. AW TC, Lepe X, Johnson GH, Mancl L. Characteristics of noncarious cervical lesions: A clinical investigation. J Am Dent Assoc 133(6):725-733, 2002 https://doi.org/10.14219/jada.archive.2002.0268
  23. Widmalm SE, Ericsson SG. Maximal bite force with centric and eccentric load. J Oral Rehabil 9:445-450, 1982 https://doi.org/10.1111/j.1365-2842.1982.tb01034.x
  24. Gibbs CH, Mahan PE, Lundeen HC, Brehnan K, Walsh EK, Holbrook WB. Occlusal forces during chewing and swallowing as measured by sound transmission. J Prosthet Dent 46:443-449, 1981 https://doi.org/10.1016/0022-3913(81)90455-8
  25. aputo AA, Standlee JP. Biomechanics in Clinical Dentistry. Chicago Quintessence Int 21-27, 1987
  26. Ziemiecki TL, Dennison JB, Charbeneau GT. Clinical evaluation of cervical composite resin restorations placed without retention. Oper Dent 12:27-33, 1987
  27. Whitehead SA, WilsonNHF, Watts DC. Demonstration of 'Vertical Barreling 'using profilometry. Eur J Prosthodont Restor Dent 7(4):131-134, 1999
  28. Browning WD, Brackett WW, Gilpatrick RO. Two-year clinical comparison of a microfilled and hybrid resin based composite in noncarious class V lesions. Oper Dent 25:46-50, 2000
  29. Kubo S, Yokota H, Sata Y, Hayashi Y. The effect of flexural load cycling on the microleakage of cervical resin composites. Oper Dent 26:451-459, 2001