DOI QR코드

DOI QR Code

수 종의 근관충전재의 열팽창 특성 측정 : Gutta-percha와 Resilon

Measurement of thermal expansion characteristic of root canal filling materials : Gutta-percha and Resilon

  • 전경아 (고려대학교 안암의료원 치과보존과) ;
  • 이인복 (서울대학교 치과대학 보존학교실) ;
  • 배광식 (서울대학교 치과대학 보존학교실) ;
  • 이우철 (서울대학교 치과대학 보존학교실) ;
  • 백승호 (서울대학교 치과대학 보존학교실)
  • Jeon, Kyung-A (Department of Conservative Dentistry, Anam Hospital, Korea University Medical Center) ;
  • Lee, In-Bog (Department of Conservative Dentistry, College of Dentistry, Seoul National University) ;
  • Bae, Kwang-Shik (Department of Conservative Dentistry, College of Dentistry, Seoul National University) ;
  • Lee, Woo-Cheol (Department of Conservative Dentistry, College of Dentistry, Seoul National University) ;
  • Baek, Seung-Ho (Department of Conservative Dentistry, College of Dentistry, Seoul National University)
  • 발행 : 2006.09.01

초록

근관충전재로 사용되는 gutta-percha의 대체재로서 Resilon이라는 bioactive glass와 약간의 방사선 불투과성 성분을 포함하는 열가소성 고분자가 최근 소개되었다. 본 연구에서는 열연화 주입식 gutta-percha와 Resilon의 열팽창 특성을 측정하고 상호 비교하였다. 실험재료 중 gutta-percha 군으로는 Obtura, Diadent 그리고 Metadent사의 gutta-percha를, Resilon으로 Pentron사의 Epiphany를 사용하였다. 열가압주입기인 Obtura II에 4가지 재료를 넣고 설정온도를 $100^{\circ}C$, $150^{\circ}C$, $180^{\circ}C$ 그리고 $200^{\circ}C$로 바꾸어 가며 각 온도에 대해서, heat-ing chamber 입구에서의 온도와 23 게이지와 20 게이지의 needle에서 사출되는 재료의 온도를 디지털 thermometer를 이용하여 측정하였다. 열팽창을 측정하기 위해 세라믹으로 내경 3 mm, 외경 10 mm. 길이 27 mm의 원통형 주형을 제작하였고, 주형 안에 각 재료를 채워 넣은 후 양끝을 세라믹 공이 (plunger)로 막았다. 이 시편을 dilatometer에 넣고 가열하여 $25^{\circ}C$에서 $75^{\circ}C$까지의 범위에서 열팽창 곡선을 얻었다. 온도에 따른 시편의 길이 변화로부터 각 재료의 열팽창 계수와 전체부피에 대한 팽창량을 계산하였다. 모든 재료에서 온도가 증가함에 따라 $45^{\circ}C$ 이하에서는 재료의 부피변화가 거의 없었고, $45^{\circ}C$에서 $55^{\circ}C$ 구간에서 급격히 팽창하였으며 그 이상의 온도에서는 완만한 부피의 증가를 보였다. $35^{\circ}C$에서 $55^{\circ}C$ 사이에서의 부피의 변화는 재료들 사이에 통계적으로 유의한 차이가 없었으며 (p > 0.05). $35^{\circ}C$에서 $75^{\circ}C$사이의 부피의 변화는 Obtura 사 gutta-percha가 Metadent사와 Diadent사의 gutta-percha에 비해 유의하게 작은 것으로 나타났다 (p <0.05). Epiphany는 gutta-percha 군들과 비슷한 열팽창을 보였다 (p > 0.05).

The purpose of this study was to evaluate the thermal expansion characteristics of injectable ther-moplasticized gutta-perchas and a Resilon. The materials investigated are Obtura gutta-percha, Diadent gutta-percha, E&Q Gutta-percha Bar and Epiphany (Resilon). The temperature at the heating chamber orifice of an Obtura II syringe and the extruded gutta-percha from the tip of both 23- and 20-gauge needle was determined using a Digital thermometer. A cylindrical ceramic mold was fabricated for thermal expansion test, which was 27 mm long, with an internal bore diameter of 3 mm and an outer diameter of 10 mm. The mold was filled with each experimental material and barrel ends were closed with two ceramic plunger. The samples in ceramic molds were heated in a dilatometer over the temperature range from $25^{\circ}C$ to $75^{\circ}C$. From the change of specimen length as a function of temperature, the coefficients of thermal expansion were deter-mined. There was no statistical difference between four materials in the thermal expansion in the range from $35^{\circ}C$ to $55^{\circ}C$ (p > 0.05). However, Obtura Gutta-percha showed smaller thermal expansion than Diadent and Metadent ones from $35^{\circ}C$ to $75^{\circ}C$ (p < 0.05). The thermal expansion of Epiphany was similar to those of the other gutta-percha groups.

키워드

참고문헌

  1. Schilder H. Filling the root canals in three dimensions. Dent Clinic North Am 11:723-744, 1967
  2. Ingle JI, Bakland LK. Endodontics. 4th ed., Wukkuan & Wilkins, Baltimore, USA, p1-46, 1994
  3. Gutmann JL, Witherspoon DE. Obturation of the cleaned and shaped root canal system. In Cohen S, Burns RC. ed., Pathways of the Pulp. 8th ed.. Mosby, St. Louis, USA, p293-364, 2002
  4. Spangberg L, Langeland K. Biologic effects of dental materials: 1. Toxicity of root canal filling materials on Hela cells in vitro. Oral Surg Oral Med Oral Pathol 35:402-414, 1973 https://doi.org/10.1016/0030-4220(73)90078-9
  5. Szep S, Grumann L, Ronge K, Schriever A. In vitro cytotoxicity of medicated and nonmedicated gutta-percha points in cultures of gingival fibroblasts. J Endod 29:36-40, 2003 https://doi.org/10.1097/00004770-200301000-00010
  6. Shipper G, Orstavik D, Trope M. An evaluation of microbial leakage in roots filled with a thermoplactic synthetic polymer-based root canal filling material (Resilon). J Endod 30:342-347, 2004 https://doi.org/10.1097/00004770-200405000-00009
  7. Teixeira FB, Thompson JY, Trope M. Dentinal bonding reaches the root canal system. J Esthet Restor Dent 16:348-354, 2004 https://doi.org/10.1111/j.1708-8240.2004.tb00066.x
  8. Shipper G, Teixeira FB, Trope M. Periapical inflammation after coronal microbial inoculation of dog roots filled with gutta-percha or Resilon. J Endod 31:91-96, 2005 https://doi.org/10.1097/01.don.0000140569.33867.bf
  9. Teixiera FB, Thompson JY, Trope M. Fracture resistance of roots endodontically treated with a new resin filling material. J Am Dent Assoc 135:646-652, 2004 https://doi.org/10.14219/jada.archive.2004.0255
  10. Tay FR, Loushine RJ, Weller RN. Ultrastructural evaluation of the apical seal in roots filled with a polycaprolactone- based root canal filling material. J Endod 31:514-519, 2005 https://doi.org/10.1097/01.don.0000152298.81097.b7
  11. Hiraishi N, Papacchini F, Tay FR. Shear bond strength of Resilon to a methacrylate-based root canal sealer. Int Endod J 38:753-763, 2005 https://doi.org/10.1111/j.1365-2591.2005.01012.x
  12. Tay FR, Loushine RJ, Pashley DH. Geometric factors affecting dentin bonding in root canals: a theoretical modeling approach. J Endod 31:584-589, 2005 https://doi.org/10.1097/01.don.0000168891.23486.de
  13. Tay FR, Pashley DH, King NM. Susceptibility of a polycaprolactone-based root canal filling material to degradation. I. Alkaline hydrolysis. J Endod 31:593- 598, 2005 https://doi.org/10.1097/01.don.0000152301.72828.61
  14. Tay FR, Pashley DH, King NM. Susceptibility of a polycaprolactone-based root canal filling material to degradation. II. Gravimetric evaluation of enzymatic hydrolysis. J Endod 31:737-741, 2005 https://doi.org/10.1097/01.don.0000155225.40794.79
  15. Goldberg F, Massone EJ, Artaza LP. Comparison of the sealing capacity of three endodontic filling techniques. J Endod 21:1-3, 1995 https://doi.org/10.1016/S0099-2399(06)80547-9
  16. Veis AA, Molyvdas IA, Lambrianidis TP. In vitro evaluation of apical leakage of root canal fillings after in situ obturation with thermoplasticized and laterally condensed gutta-percha. Int Endod J 27:213-217, 1994 https://doi.org/10.1111/j.1365-2591.1994.tb00256.x
  17. Venturi M, Breschi L. Evaluation of apical filling after warm vertical gutta-percha compaction using different procedures. J Endod 30:436-440, 2004 https://doi.org/10.1097/00004770-200406000-00015
  18. Schilder H, Goodman A, Aldrich W. The thermomechanical properties of gutta-percha. Part V. Volume change in bulk gutta-percha as a function of temperature and its relationship to molecular phase transformation. Oral Surg Oral Med Oral Pathol 59:285-296, 1985 https://doi.org/10.1016/0030-4220(85)90169-0
  19. Tsukada G, Tanaka T, Torii M. Shear modulus and thermal properties of gutta-percha for root canal filling. J Oral Rehabil 31:1139-1144, 2004 https://doi.org/10.1111/j.1365-2842.2004.01349.x
  20. Cohen BD, Combe EC, Lilley JD. Effect of thermal placement techniques on some physical propertire of gutta-percha. Int Endod J 25:292-296, 1992 https://doi.org/10.1111/j.1365-2591.1992.tb00759.x
  21. Friedman CE, Sandrik JL, Heuer MA. Composition and physical properties of gutta-percha endodontic filling materials. J Endod 3:304-308, 1977 https://doi.org/10.1016/S0099-2399(77)80035-6
  22. Gurgel-Filho ED, Feitosa JPA, Teixeira FB. Chemical and X-ray analysis of five brand of dental gutta-percha cone. Int Endod J 36:302-307, 2003 https://doi.org/10.1046/j.1365-2591.2003.00653.x
  23. Marciano J, Michailesco PM. Dental gutta-percha : Chemical Composition, X-ray identification, enthalpic studies, and clinical implications. J Endod 15:149-153, 1989 https://doi.org/10.1016/S0099-2399(89)80251-1
  24. Cook WD, Forresr M, Goodwin AA. A simple method for the measurement of polymerization shrinkage in dental composites. Dent Mater 15:447-449, 1999 https://doi.org/10.1016/S0109-5641(99)00073-1
  25. Rees JS, Jacobsen PH. The polymerization shrinkage of composite resins. Dental Mater 5:41-44, 1989 https://doi.org/10.1016/0109-5641(89)90092-4
  26. Craig RG, Powers JM, Wataha JC. Dental Materials: properties and manupulation. 8th ed., Mosby, St. Louis, USA, p.17, 2004
  27. Gurney BF, Best EJ, Gervasio G. Physical measurement on gutta-percha. Oral Sur Oral Med Oral Pathol 32:260-270, 1971 https://doi.org/10.1016/0030-4220(71)90229-5
  28. Weller RN, Koch KA. In vitro radicular temperatures produced by injectable thermoplasticized gutta-percha. Int Endod J 28:86-90, 1995 https://doi.org/10.1111/j.1365-2591.1995.tb00164.x
  29. Sweatman TL, Baumgartner JC, Sakaguchi RL. Radicular temperatures associated with thermoplasticized gutta-percha. J Endod 27:512-515, 2001 https://doi.org/10.1097/00004770-200108000-00004
  30. Weller RN, Jurcak JJ, Donley DL, Kulid JC. A new model system for measuring intracanal temperatures. J Endod 17:491-494, 1991 https://doi.org/10.1016/S0099-2399(06)81796-6
  31. Gutmann JL, Rakusin H, Powe R, Bowles WH. Evaluation of heat transfer during root canal obturation with thermoplasticized gutta-percha. Part II. In vivo response to heat levels generated. J Endod 13:441-448, 1987 https://doi.org/10.1016/S0099-2399(87)80062-6
  32. Donley DL, Weller RN, Kulid JC. In vitro intracanal temperatures produced by low- and high-temperature thermoplasticized injectable gutta-percha. J Endod 17:307-309, 1991 https://doi.org/10.1016/S0099-2399(06)81695-X
  33. Marlin J, Schilder H. Physical properties of gutta-percha when subjected to heat and vertical condensation. Oral Surg Oral Med Oral Pathol 36:872-879, 1973 https://doi.org/10.1016/0030-4220(73)90339-3
  34. Schilder H, Goodman A, Aldrich W. The thermomechanical properties of gutta-percha. III. Determination of phase transition temperatures for gutta-percha. Oral Surg Oral Med Oral Pathol 38:109-114, 1974 https://doi.org/10.1016/0030-4220(74)90321-1