INFERENCE FOR ABSOLUTE LORENZ CURVE AND ABSOLUTE LORENZ ORDERING

  • Published : 2006.09.01

Abstract

Absolute Lorenz curve plays an important role for measuring absolute income inequality. Properties of absolute Lorenz curve are listed. Asymptotically distribution free and consistent tests have been proposed for comparing two absolute Lorenz curves in the whole interval [P1, P2] where 0 < P1 < P2 < 1. Absolute Lorenz ordering has been discussed for some distributions.

Keywords

References

  1. ARORA, S. AND JAIN, K. (2006). 'Testing for generalized Lorenz dominance', Statistical Methods and Applications, 15, 75-88 https://doi.org/10.1007/s10260-006-0003-y
  2. BEACH, C. M. AND DAVIDSON, R. (1983). 'Distribution-free statistical inference with Lorenz curves and income shares', Review of Economic Studies, 50, 723-735 https://doi.org/10.2307/2297772
  3. BISHOP, J. A., CHAKRABORTI, S. AND THISTLE, P. D. (1994). 'Relative inequality, absolute inequality and welfare: Large sample tests for partial orders', Bulletin of Economic Research, 46, 41-59 https://doi.org/10.1111/j.1467-8586.1994.tb00577.x
  4. BISHOP, J. A., FORMBY, J. P. AND THISTLE, P. D. (1989). 'Statistical inference, income distributions and social welfare', Research on Economic Inequality, 1, 49-82
  5. BLACKORBY, C. AND DONALDSON, D. (1980). 'A theoretical treatment of indices of absolute inequality', International Economic Review, 21, 107-136 https://doi.org/10.2307/2526243
  6. CHAKRABORTI, S., BISHOP, J. A. AND THISTLE, P. D. (1988). 'Large sample tests for absolute Lorenz dominance', Economics Letters, 26, 291-294 https://doi.org/10.1016/0165-1765(88)90151-6
  7. KOLM, S. C. (1976). 'Unequal inequalities. I', Journal of Economic Theory, 12, 416-442 https://doi.org/10.1016/0022-0531(76)90037-5
  8. MEHRAN, F. (1976). 'Linear measures of income inequality', Econometrica, 44, 805-809 https://doi.org/10.2307/1913446
  9. MOYES, P. (1987). 'A new concept of Lorenz dominance', Economic Letters, 23, 203-207 https://doi.org/10.1016/0165-1765(87)90040-1
  10. SERFLING, R. J. (1980). Approximation Theorems of Mathematical Statistics, John Wiley & Sons, New York
  11. SHORROCKS, A. F. (1983). 'Ranking income distributions', Economica, 50, 3-17 https://doi.org/10.2307/2554117