보리 모자이크 바이러스 저항성 정도가 상이한 보리 품종간 생육 및 수량 비교

박종철*, 이미자*, 최인배**, 김미정*, 박철수*, 김정곤*

*농촌진흥청 작물과학원 호남농업연구소, **농촌진흥청 작물과학원 유전육종과

Growth and Yield Comparisons among Barley Varieties with Different Resistance to Barley Mosaic Virus

Jong Chul Park*, Mi-Ja Lee*, In-Bae Choi**, Mi-Jung Kim*, Chul Soo Park*, and Jung-Gon Kim*

*Honam Agricultural Research Institute, NICS, RDA, Iksan 570-080, Korea
**Breeding & Genetics Division, NICS, RDA, Sunwon 441-857, Korea

ABSTRACT Viral diseases, especially Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV), have been most serious in barley fields. In this study, we investigated the effect of different levels of resistance to viral diseases on the plant growth and yield in barley. Various viral disease symptoms on leaves of overwintered plants were similar between medial-resistant and susceptible varieties of Saessalbori and Baegdong. In diagnosis of virus infection, BaYMV and BaMMV were detected in Saessalbori and Baegdong, but not in the resistant variety, Naehansalbori. Plant height was restrained about 11~12 cm prior to heading in Saessalbori and Baegdong comparing to Naehansalbori. Even if both varieties were medial resistant to virus diseases, Saessalbori was different from Baegdong in heading date and culm length due to its recovery from viral damages prior to heading. Both medial-resistant and susceptible varieties were quite different from the resistant variety in yield components such as heading date, number of spikes and culm length when evaluated in the virus-infected or non-infected field. Baegdong delayed 7 days in heading date and reduced by more than 50% in culm length and spike numbers as compared to Naehansalbori. On the other hand, Saessalbori showed similar heading date, but was shorter by 20% in culm length than Naehansalbori. Three varieties tested in the non-infected field over two years were not significantly different for yield potential with ranges of 340~405 kg/10a. However, significant yield reduction (P<0.01) was observed in Saessalbori and Baegdong with ranges of 108~288 kg/10a as compared to Naehansalbori (391 kg/10a) when tested in the virus-infected field. Yield potentials of Saessalbori and Baegdong reduced by 35 and 63%, respectively in the virus-infected field as compared to those in the non-infected field. Our results showed that damages from virus diseases were significant on the early plant growth to yield and its components in barley.

Keywords: barley, BaYMV, BaMMV, resistance, yield

우리나라 보리 품종 육성은 1950년대 이후 순단분리 육성 이 교잡육성으로 대체되면서 본격화되었다. 또한 육성 방향은 수량성 중대와 함께 바나 콩 등과의 야마목 재배 목표인 것으로 인하여 갑작 단축이 중요한 목표가 되었다. 또한 다비재배 조건에서 발생되는 도복 저항성 품종 육성 또한 70년대 이후 주요 목표 중 하나가 되었다(하근 등, 2000). 한편, 밀류바이러스에 대한 내병성 품종 육성과 관련된 연구는 90년대 후반으로부터 관심을 가지는 분야가 되었다. 보리발생병해는 주로 검무병, 황가루병 및 불은골팡이병 등의 질병에 의한 피해가 알려져 왔으나, 90년대 후반부터 남부지역 밀류보리 재배지에 중점을 두어 밀류바이러스와 밀류보리 피해가 크게 나타나고 있는 것으로 보인다. 일반적인 밀류바이러스병의 방제와 마찬가지로 밀류에서도 저항성 품종의 육성이 가장 효과적인 방제 방법으로 알려져 있으며(Agrios, 1988),
현재 보리 품종 육성에 있어 바이러스병 저항성은 가장 중요한 육성 목표중 하나이다. 일반적으로 품종별 저항성 정도는 견보기가 가장 저항성을 보이며, 책임보리는 중 정도 매주보리는 감수성이 특성을 가지는 것으로 알려져 있다. 현재까지 보리 육성 품종은 지역별로 바이러스병에 대한 표준 검정 시험을 통해 저항성 정도가 평가되고 있으나, 품종의 저항성 정도에 따른 생육이나 수량의 피해 정도는 보고되어 있지 않고 있다. 따라서 본 시험은 저항성 정도별 보리의 생육 및 수량 감소 정도를 조사하여 바이러스병 발생 정도에 따른 생육 피해 및 수량 감소 정도를 예측하기 위한 자료로 활용하기 위하여 수행하였다.

재료 및 방법

시험재료 및 파종

보리 매주보리 품종간 바이러스병 저항성 정도가 가장 높았던 보리 밭을 대상으로 시험을 수행하였다. 쌀보리 품종간 가정 수치로 알려진 밭적과 회복능력이 좋은 중도저항성의 새로운 보리(새질 바이러스병에 대한 저항성 정도)를 포함한 산회양(석산) 내에서 발생한 피해 정도를 평가했으며, 병종이 없는 일반 밭에서 각 파종하여 시험을 수행하였다. 파종은 전액 식량의 파종 수레 이기인 10월 20일에 40 cm × 18 cm (흡목 × 파종) 간격으로 2 m 흔한 것 통과 시험 포장에 조사하였으며, 품종별 3번으로 2003년과 2004년 2개년 동안 동일 시험포장에서 수행되었다. 파종 후 재배 및 포장관리는 표준 재배방법에 준하여 수행하였다.(호남농시, 2002).

이병점도 및 바이러스 감염 조사

생물 및 수량조사

바이러스 감염시 전형적인 증상인 보리의 신장 얇게 정도의 변화를 월등전하고 월등 후 출수기 이전까지 조사하였다. 또한 출수가 차이와 성숙기 이후에는 간수, 수수, 수량, 일수, 수량 등 수량 구성요소를 조사하여 품종별로 비교하였다. 또한 수확 후 품종 수량에 대한 저항성 정도별로 정착 후 수량 감소율을 조사하였으며, 저항성 정도에 따른 생육이 없 는 전전포장 결과와 비교 분석하였다. 본 조사의 2004년과 2005년 2개년 동안 3번으로 수행하였으며 보리의 생육은 치료별 1주를 3번으로 조사하였고, 수량은 시험구 전체를 수확하여 측정하였으며, 통계처리 분석을 통하여 치료별 저항성 정도 차이를 분석하였다.

결과 및 고찰

품종별 이병점도 및 생육 차이 조사

품종별 저항성 정도에 따른 이병점도를 뿐의 소화 및 모자이크 발생정도에 따라 조사한 결과 가장 수량성이 높은 품종은 7~9, 중 정도의 새로운 5~7을 보였고 내한은 0~1로 저항성 정도로 보았다(Table 1). 한편 바이러스 감염 시험에서 밭적과 새질은 BaYMV와 BaMMV에 감염되어 있었으나 내한은 BaYMV에만 감염된 것으로 나타났다. 이 결과는 본 시험에서 관찰된 결과선이나 월등 후 보리 잔의 환 화, 모자이크 증상이 바이러스에 의해 발생한다고 것을 나 타내었다. 또한, 품종별 바이러스병에 대한 저항성 정도 가 다르게 나타났는데, 이는 바이러스병의 저항성 품종이 가장 효과적인 방해 방법이라는 일반적인 사실보다도 많은 결과를 보였다. 최근까지 세계적으로 보리의 BaYMV 와 BaMMV에 대해 rym1~16까지 16개의 저항성 유전자가 보고되어 있다(Habeuku et al., 2005). 그러나 국내에서는 내한이 있고, 보리와 동일 품종에 대해 저항성이 유전자가 부족하고 있을 뿐 정확한 유전자의 동종이나 보리가 아닌 두 가지 결과를 보였다. 최근까지 세계적으로 보리의 BaYMV와 BaMMV에 대해 rym1~16까지 16개의 저항성 유전자가 보고되어 있다(Habeuku et al., 2005). 그러나 국내에서는 내한이 있고, 보리와 동일 품종에 대해 저항성이 유전자가 부족하고 있을 뿐 정확한 유전자의 동종이나 보리가 아닌 두 가지 결과를 보았다. 최근까지 세계적으로 보리의 BaYMV와 BaMMV에 대해 rym1~16까지 16개의 저항성 유전자가 보고되어 있다(Habeuku et al., 2005). 그러나 국내에서는 내한이 있고, 보리와 동일 품종에 대해 저항성이 유전자가 부족하고 있을 뿐 정확한 유전자의 동종이나 보리가 아닌 두 가지 결과를 보았다.
Table 1. Various diseased degree and ELISA result of three barley genotypes in the virus-infected field.

<table>
<thead>
<tr>
<th>Resistance</th>
<th>Diseased degree</th>
<th>Viral infection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0-9)</td>
<td>BaYMV</td>
</tr>
<tr>
<td>Susceptible (Baegdong)</td>
<td>7-9</td>
<td></td>
</tr>
<tr>
<td>Medial (Saessalbori)</td>
<td>5-7</td>
<td></td>
</tr>
<tr>
<td>Resistant (Naehanssalbori)</td>
<td>0-1</td>
<td></td>
</tr>
</tbody>
</table>

1Diseased degree was measured by ratio of symptom manifestation in leaves referred to So et al. (1997) as 0 (no symptom) and 9 (over 71%), respectively. 1) The abbreviation means Barley yellow mosaic virus (BaYMV), Barley mild mosaic virus (BaMMV) and Soil-borne wheat mosaic virus (SBWMV), respectively. 2) + and - mean viral infection as + : infection and - : non infection.

Fig. 1. Comparisons of three barley genotypes for plant height with different resistance level in the virus-infected field.

Fig. 2. Comparisons of three barley genotypes for plant height with different resistance level in the non-infected field.

과를 보였다(Fig. 1). 저항성으로 나타난 내한이 중도저항성과 감수성인 새Nhap과 백동에 비해 식량을 적게 하여 수출 사전까지 지속적으로 신장하였다. 중도저항성인 새Nhap 감수성인 백동에 비해 식량이 적은 것이, 내한에 비해 생육이 억제된 피해를 보았다. 방병을 조사 결과는 하계일인 원기항의 초기 신장은 새Nhap 백동과 내한에 비해 약간 컸으나 원동 후에는 저항성인 내한의 생육속도가 빨랐다. 품종간 조상의 차이를 확인하기위해 병 발생이 없는 포장에서 동일한 품종과 파종기에 파종한 후 생육의 차이를 비교한 결과 3 품종간 조상의 변화 암에는 같은 경향을 보였으며, 조사기간 조상의 차이도 비슷한 차이로 경과하였다(Fig. 2). 다만 품종들의 조상이 상대적으로 발병상습성이 비해 작은 것으로 조사되었는데 이는 발병상황과는 상관이 없는 토양 비옥도의 차이에 의한 것으로 생각되었다. BaYMV에 감염된 보리에서는 암한 황화나 모자이크 증상이 나타나 후 신장이 억제된 증상을 나타내는 것으로 보고되어 있다(박 등, 2004). 그러나 저항성 정도에 따른 생육 차이 등은 보고되어 있지 않다. 본 시험의 결과에서 이병정도 5의 중도저항성과 9의 감수성 품종에서 월등한 생육체계의 이에 의한 병변 발생과 함께 흙으로 이송에 비해 생육이 크게 억제되는 것을 확인할 수 있었다. 건전포장에서 나타난 품종 고유의 신장 특성을 고려하여 출수기 이전 4월 8일에 중도저항성인 새Nhap은 10.5 cm, 감수성인 백동은 11.8 cm 정도 신장이 억제된 초기 생육 피해를 보였다. 중도저항성으로 알려진 새Nhap과 감수성인 백동에서 신장 차이가 1.3 cm 정도로 작아 초기 생육 정도로는 중도저항성과 감수성의 편평이 어려운 것으로 나타났다. 이는 월등 후 병변 발생기에는 중도저항성 이하의 품종에서는 병변 발생일정과 비슷하게 나타나 저항성 정도를 뚜렷하게 판별하기가 어려으며, 이에 따라 초기 생육은 감수성과 거의 비슷한 수준으로 피해를 받는 것으로 나타났다.
Table 2. Comparisons of three barley genotypes for yield components with different resistance level in the virus-infected (DF) and non-infected (NF) fields.

<table>
<thead>
<tr>
<th>Resistance</th>
<th>Heading date (Month. date)</th>
<th>No. of spikes (per m²)</th>
<th>Culm length (cm)</th>
<th>Spike length (cm)</th>
<th>No. of kernels (per spike)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DF†</td>
<td>NF</td>
<td>DF</td>
<td>NF</td>
<td>DF</td>
</tr>
<tr>
<td>Resistant (Naehan)</td>
<td>4.27</td>
<td>4.26</td>
<td>436</td>
<td>497</td>
<td>96.8</td>
</tr>
<tr>
<td>Medial (Saesaesal)</td>
<td>4.28</td>
<td>4.24</td>
<td>429</td>
<td>533</td>
<td>53.6</td>
</tr>
<tr>
<td>Susceptible (Baedong)</td>
<td>5.6</td>
<td>4.30</td>
<td>156</td>
<td>369</td>
<td>31.5</td>
</tr>
</tbody>
</table>

†DF and NF mean infection and no infection field, respectively.

수량구성 요소의 피해

출수기 이후 생육 후기에 저항성 정도에 따른 품종별 피해 정도를 진정포장에서와 비교 조사하였다. 발병 상습지 조사 결과 중도저항성과 감수성 품종에서 저항성이 비해 출수기, 수수, 간장 등에서 특히 차이가 큰 것으로 나타났다(Table 2). 품종간에 진정포장에서의 생육 특성을 비교한 결과에서도 간장과 수수, 출수기까지 가장 큰 피해를 받은 것으로 조사되었다. 이 결과는 감수성이 백동에서 바이러스병의 감염시 세포 신장이 억제되어 조장이 작아지고 이로 인해 출수기 지연, 간장 단축의 피해가 발생한다는 박 등 (2004)의 보고와도 같은 결과를 보였다. 품종별 생육 피해를 일반포장과 비교해 보면 감수성이 백동에서 출수기 7일 늦어졌고, 간장과 수수는 50% 이하의 생육을 보였으나 일부로는 피해를 받지 않은 것으로 나타났다. 중도저항성인 세포에서는 출수기는 1일 차이로 적었으나 수수와 간장의 생육이 일반 포장에 비해 20% 정도 억제되는 피해를 보였다. 바이러스 감염에 의해 발생하는 보라 얼의 변형은 기온 20°C 이상이 되면 은폐(masking)되는 특징을 보이는 것으로 알려져 있는데(소 등, 1997), 최고점기 이후 벼병 발생과 출수 전 생육 회복정도가 중도저항성 이하에서는 저항성 정도를 판단하는데 더욱 중요한 지표가 될 것으로 생각되었다. 즉, 중도 저항성의 경우 일정후 벼병 발생은 감수성과 비슷한 초기 신장의 억제정도를 보이더라도, 이후 생육 회복능력 정도를 관찰함으로 품종의 저항성과 피해정도를 더욱 분석할 수 있을 것으로 보인다. 그러나 내 보-navigation|BaYMV, BaMMV, SBWMV| 등의 여러 바이러스들이 조성 감염되어 있으며(박 등, 2004), 또한 빌 동작 후 연도 등의 기상조건에 따라 바이러스 발생정도가 차 이를 보이는 보고(박 등, 2003)로 볼 때 중도저항성 품종은 특수 목적이나 재배지의 바이러스병 발생 정도가 미약한 경우를 제외하고는 재배하지 않는 것이 생육 피해를 줄일 수 있는 가장 효과적인 방법으로 생각된다. 한편, 보리에서

수량 피해

품종별 저항성 정도에 따른 수량 피해 정도를 조사하였다. 품종간 종실 수량 특성 차이를 확인하기 위해 병 발생이 없는 포장에서 2개년간 재배하여 평균 종실중을 조사한 결과 품종간 수량 차이의 유의성이 인정되지 않았다(Table 3). 진정한 일반포장에서의 품종간 평균 수량은 340 kg - 405 kg/10a으로 유의성(P<0.01)을 보이지 않았다. 이는 본 시험에 사용된 품종들의 수량성은 바이러스병 발생이 없는 경우 저항성에 관계없이 차이가 없음을 보여주는 결과로 나타났다. 반면, 사슬발병 포장에서 저항성 정도별 수량성을 조사한 결과 품종간 저항성 정도에 따라 유의성 있는 차이 (P<0.01)를 보였다. 저항성이 내한발보고의 경우 10a당 391 kg로 진정 포장에서와 비슷한 결과를 보였지만 중도저항성과 감수성이 내한과 백동의 경우 10a당 각각 283 kg과 103 kg를 보여 내한발보고에 비해 108~288 kg 감소되는 피해를 보인 것으로 조사되었다. 또한, 바이러스 감염 포장에서의 수량성을 진정포장의 동일 품종과 비교해 볼 때 저항성인 내한은 큰 차이가 없었다(Fig. 3). 그러나 중도저항성인 내한은 진정구 수량의 약 60~70%로 평균 35%의 수량 감소 피해를 보였다. 감수성이 백동의 경우 연차별로 진정구 수량의 약 30~46%만을 보여 평균 63%의 수량 감소 피해를 나타내었다.
보리 모자이크 바이러스 저항성 정도가 상이한 보리 품종간 생육 및 수량 비교

Table 3. Comparisons of three barley genotypes for yield with different resistance level in the virus-infected (DF) and non-infected (NF) fields.

<table>
<thead>
<tr>
<th>Resistance</th>
<th>2004 DF</th>
<th>2004 NF</th>
<th>2005 DF</th>
<th>2005 NF</th>
<th>Average DF</th>
<th>Average NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistant (Naehan)</td>
<td>338.0</td>
<td>307.3</td>
<td>443.5</td>
<td>478.1</td>
<td>391</td>
<td>393</td>
</tr>
<tr>
<td>Medial (Saessal)</td>
<td>225.0</td>
<td>376.8</td>
<td>340.4</td>
<td>432.3</td>
<td>283</td>
<td>405</td>
</tr>
<tr>
<td>Susceptible (Baegdong)</td>
<td>135.0</td>
<td>303.5</td>
<td>70.2</td>
<td>375.4</td>
<td>103</td>
<td>340</td>
</tr>
</tbody>
</table>

CV (%) 6.63 8.47
LSD (%) 64.61** 120.64***

as and ** mean no and significant differences at 0.01 probabilities, respectively.

적요

보리의 저항성 정도에 따른 바이러스병에 의한 생육 및 수량 피해를 조사하였다.
1. 병성 발병정도에 따라 백중과 백주보리가 각각 7~9와 5~7의 이병정도를 보여 감수성과 중도저항성을, 난해방보리는 0~1 정도로 저항성으로 조사되었다.
2. 감수성과 중도저항성 품종에서 Barley yellow mosaic
virus와 Barley mild mosaic virus의 감염이 확인되었으나, 지향성인 내한양보리는 바이러스 감염이 검정되지 않았다. 3. 월동 후 생육 신장 조사에서 지향성은 지속적인 생육 증가 현상을 나타낸 반면, 중도저항성과 감수성 품종은 10.5~11.8 cm 신장이 억제되는 생육 피해를 보였다.

4. 수량구성 요소의 피해를 간접포장 결과와 비교했을 때 중도저항성과 감수성 품종에서 지향성에 비해 출수기, 수수, 간장 등에서 특히 차이가 큰 것으로 나타났다. 감수성 품종에서 출수기는 7일 늦어졌고, 간장과 수수는 50% 이하의 생육을 보였으며, 중도저항성에서는 수수와 간장의 생육이 일반 포장에 비해 20% 정도 억제되는 피해를 보였다.

5. 품종별 저항성 정도에 따른 수량 피해 정도를 조사 결과, 병 발생이 없는 일반포장에 비해 중도저항성과 감수성 품종에서 10a당 108~288 kg 감소되는 피해를 보인 것으로 조사되었다.

6. 바이러스 감염시 중도저항성이 내한양보리는 평균 35%의 수량 감소 피해를 보였으며, 감수성인 백동의 경우 평균 63%의 수량 감소 피해를 나타내었다.

인용문헌

김양길, 서재환, 박종철, 이중호. 2003. 보리호위측병(BaYMV) 이번에 따른 별보리 품종의 생육특성 및 품질. 한국작물학회. 48(6) : 501-505.

박종철, 서재환, 김형무, 이귀재, 박상래, 서덕룡. 2003. 가상요인인 보리호위측병(BaYMV) 발생에 미치는 영향. 한국작물학회 48 : 156-159.

박종철. 2004. 보리호위측병(Barley yellow mosaic virus)의 발생 특성과 핵산 구조에 의한 지역간 비교. 전북대학교 박사 학위논문.

박종철, 이재동, 서재환, 김양길, 정신키, 김형무. 2004. 보리호위측병(Barley yellow mosaic virus)에 의한 보리의 생육 피해 및 세포학적 변화. 식물병 연구. 한국식물병관리학회 10(1) : 34-38.

박종철, 서재환, 김양길, 이종문. 2005. 국내 백주재배자의 바이러스 발생현황과 BaYMV-Jk와 BaMMV에 대한 저항성 유전자 반응 검증. 한국작물학회. 50(3) : 197-204.

소인영, 정성수, 이귀재, 오양호. 1991. 보리호위측바이러스 (BaYMV)의 벼개체 검정 및 방범법에 관한 연구(II). 농식품논집 34 : 75-83.

소인영, 이귀재, 정길형, 서재환. 1997. 남부지방에 발생하는 보리호위측바이러스(BaYMV) 및 보리바이러스바이러스(BaMMV)의 분포와 저항성 품종 선발. 한국식물병관리학회지 13(2) : 118-124.